
MATHEMATICS OF COMPUTATION 
VOLUME 59, NUMBER 200 
OCTOBER 1992, PAGES 583-608 

EXCEPTIONAL GRAPHS WITH SMALLEST 
EIGENVALUE -2 AND RELATED PROBLEMS 

F. C. BUSSEMAKER AND A. NEUMAIER 

ABSTRACT. This paper summarizes the known results on graphs with smallest 
eigenvalue around -2, and completes the theory by proving a number of new 
results, giving comprehensive tables of the finitely many exceptions, and pos- 
ing some new problems. Then the theory is applied to characterize a class of 
distance-regular graphs of large diameter by their intersection array. 

INTRODUCTION 

This paper presents a theory of graphs with smallest eigenvalue around -2 
(in ?? 1 and 2, with tables in the appendix of the microfiche section) and their 
application to a characterization problem for distance-regular graphs (?3). 

Apart from the classical line graph theorem of Cameron, Goethals, Seidel, 
and Shult [10]-which is introduced here in a new way by means of root 
lattices-and consequences of it observed by Bussemaker, Cvetkovid, Doob, 
Kumar, Rao, Seidel, Simid, Singhi, and Vijayan [8, 16, 18, 20, 21, 30, 35, 44], 
we obtain a number of new results, namely 

(i) a classification of graphs F with smallest eigenvalue -2 such that F or 
its complement are edge-regular (Theorem 1.2), 

(ii) a complete list of minimal graphs with smallest eigenvalue -2 (Theorem 
1.7 and Table 3), 

(iii) a complete list of minimal forbidden subgraphs for the class of graphs 
with smallest eigenvalue > -2 (Table 4), and 

(iv) the computation of the eigenvalue gap at -2 (Theorem 2.4). 
The importance of the eigenvalue gap is demonstrated by the characterization 

of a class of distance-regular graphs (folded cubes, folded half-cubes, and folded 
Johnson graphs of large diameters) by their intersection arrays, in the spirit of 
earlier work of Terwilliger [41] and Neumaier [34]. 

The proofs for (i)-(iv) are based on extensive computer calculations which 
enumerate the finitely many exceptions arising from the exceptional root lattices 
(or root systems) E6, E7, and E8. We challenge the reader at several places 
to provide conceptional proofs of some remarkable observations deduced here 
from lists of graphs generated by computer. We also point out a number of 
open questions. 

ANotation. If F is a granh and S a set of vertices of F. we denote by F\S the 
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L2 @ = 4 

FIGURE 1. The two minimal forbidden line graphs with 
five vertices. 

graph obtained by deleting from F the vertices in S and all edges containing 
a vertex of S. A subgraph of F always refers to an induced subgraph, i.e., 
a graph of the form F\S. For a vertex y E F, F(y) denotes the subgraph 
induced on the set of neighbors of y, and ye denotes the subgraph induced 
on the set consisting of y and its neighbors. The relation _ defined by y =_ ( 
if and only if yeL = (51 is an equivalence relation on the set of vertices, and 
if we identify equivalent vertices, we obtain a reduced graph F. F can be 
recovered from F as a clique extension, i.e., by replacing each vertex 2 of F 
by a suitable clique C2, and joining the vertices of C2 with the vertices of 
C3 when 2 and (s are adjacent. We shall draw a clique extension of F by 
drawing vertices of F replaced by an i-clique as circles with label i if i > 1, 
and as black dots if i = 1 (cf. Figure 1). The eigenvalues of a graph F are the 
eigenvalues of its (0, 1)-adjacency matrix; the spectrum of F is the collection 
of its eigenvalues (together with their multiplicities). For a general discussion 
of graph spectra, see the book by Cvetkovid, Doob, and Sachs [17]. We denote 
the largest eigenvalue of F by Amax(F) and the smallest eigenvalue of F by 
imin(F). By interlacing (cf. [17]), we have for a subgraph F' of F the relations 

Amin (I) <_ Amin (r/ ) Amax (r ) <_ Amax (rl 

The minimal valency of a graph F is denoted by kmin(F) . A graph F is called 
regular if every vertex has the same valency k, edge-regular (coedge-regular) if 
F is regular and any two adjacent (nonadjacent) vertices have the same number 
A (Cu) of common neighbors, amply regular if F is edge-regular and any two 
vertices at distance 2 have the same number of common neighbors, and strongly 
regular if it is edge-regular and coedge-regular. 

Since isomorphic graphs have the same spectrum, we do not distinguish be- 
tween different isomorphic graphs. 

1. GRAPHS WITH SMALLEST EIGENVALUE > -2 

The well-known fact that all line graphs have smallest eigenvalue > -2 
prompted a great deal of interest in the characterization of certain classes of 
graphs F with Amin(F) > A* for A* around -2. The work done on this prob- 
lem culminated in a beautiful theory of Cameron, Goethals, Seidel, and Shult 
[10] who related the question to root systems. Together with computer calcula- 
tions by Bussemaker, Cvetkovid, and Seidel [8], this theory implies a complete 
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classification of all regular graphs with smallest eigenvalue > -2, and, as noted 
by Doob and Cvetkovi6 [21], a classification of all graphs (whether regular or 
not) with smallest eigenvalue > -2. In this section we summarize these results, 
and give some numerical information on the exceptional graphs. 

A root lattice is an additive subgroup L of Rn generated by a set X of vectors 
such that (x, x) = 2 and (x, y) E Z for all x, y E X; here, (x, y) = E xiyi 
is the standard inner product in Rn . The vectors in L of norm (x, x) = 2 are 
called the roots of L. A root lattice is called irreducible if it is not a direct sum 
of proper sublattices. Every irreducible root lattice is isomorphic to one of the 
lattices 

An = {X E Zn+l I Xi = O} (n > 1), 

Dn = {XE I Zn I 2 xi even} (n > 4), 

E8 =D8 U(c +DO), where c I(1, 1, 1, 1, 1, 1, 1, 1), 

E7 = {x e E8 E xi = 0}, 
E6 = {x E 17 | x7 + X8 = 0} 

(cf. Witt [45], Cameron et al. [10], Neumaier [33]). In terms of basis vectors 
el, ... , en of Zn , the roots of An are the n(n + 1) vectors 

ei - ej ( < i < j < n +), 

those of Dn are the 2n(n - 1) vectors 

?ei ? ej (I < i < j < n), 

and those of E8 are the 240 = 112 + 128 vectors 

?ei ?ej (I < i< j<8) 

and, with an even number of + signs, 

(?el ? e2 ? e3 ? e4 ? e5 ?e6 ? e7 ? e8). 

From this, one finds that E7 contains 126 = 56 + 70 roots and E6 contains 
72 = 32 + 40 roots. 

If F is a connected graph with Amin(F) > -2 and adjacency matrix A, then 
G = A + 21 is a symmetric positive semidefinite matrix. Thus, G is the Gram 
matrix of a set X of vectors of Rn , i.e., there is a bijection -: IF - X such 
that 

2 if y= 3, 
I if y,3 are adjacent, 

0 otherwise. 
Such a mapping is called a spherical (2, 1, 0)-representation, and in this paper 
simply a representation of F. The additive subgroup L+(F) generated by X 
is a root lattice (whose isomorphism type depends on F but not on X), and 
since F is connected, L+ (F) is irreducible. This implies the basic observation 
of Cameron et al. [10] that every connected graph F with Armin(F) > -2 has 
a representation by roots of An (n > 1), Dn (n > 4), or En (n = 6, 7, 8). 
Conversely, if F is represented by roots of An, Dn, or En, then the Gram 
matrix A + 2I of the image of F is positive semidefinite, so that Amin (F) > -2 . 
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The line graph of a graph A is the graph L(A) whose vertices are the 
edges of A, two edges being adjacent if they intersect. Generalized line graphs 
L(A, a,, ... , am), introduced by Hoffman [25], are obtained from the line 
graph L(A) of a graph A with vertex set { 1, ... , m} by adding the vertices 
(i, ?1) (i = 1, ... , m ; I = 1, .. . , ai) and joining (i, 1) with all vertices i, j 
of L(A) and all (i, 1'), 1' $ ?1. We get a representation of a generalized 
line graph by representing the vertices ij of L(A) by ei + ej and the adjoined 
vertices (i, ?1) by ei ? e(i 1), I = 1, ... , ai, where the ei, e(i,l) form a set 
of orthonormal vectors. Moreover, if A is bipartite with bipartite parts A, B, 
then L(A) has also a representation by roots of Am-1 obtained by representing 
an edge ij with i e A, j e B by ei - ej. 

By analyzing the possible representations by roots of An and Dn, Cameron, 
Goethals, Seidel, and Shult [10] arrived at the following result. 

1.1. Theorem. Let F be a connected graph with smallest eigenvalue > -2. 
Then one of the following holds: 

(i) F is a generalized line graph. 
(ii) F has a representation by roots of E8. The number v of vertices, and 

the average valency k, are restricted by v < min(36, 2k + 8). Moreover, every 
vertex has valency at most 28. 

An as yet unsolved problem is the characterization of the graphs under (ii). 
Since every subgraph of such a graph is again represented by roots of E8, it 
suffices to determine the (finitely many) maximal graphs under (ii) which are 
not generalized line graphs. It seems that most graphs under (ii) can be obtained 
by switching. 

Switching a graph F with respect to a set S of vertices (or with respect 
to its complement SC) is the operation of removing all edges of F between 
S and SC and adding the new edges YI, Y2 (YI E S, Y2 E SC, Yl -# Y2) 
(cf. Seidel [36]). If Fl is obtained from F by switching with respect to SI, 
and F2 is obtained from Fl by switching with respect to S2, then F2 can be 
directly obtained from F by switching with respect to the symmetric difference 
(SI n S2) u (S n S2) . Therefore, switching defines an equivalence relation on the 
set of graphs with a given vertex set. If F is the line graph of a graph A with 
vertex set { 1, 2, ... , 8}, then the graph F' obtained from F by switching 
with respect to S can be represented in E8 by the roots ei + ej (if ij is an 
edge 0 S) and c - ei - ej (if ij is an edge in S); here, c = 1(el + +e8). 
Therefore, F' has smallest eigenvalue > -2. The maximal graphs obtainable 
from this construction are the graphs which are switching-equivalent to the 
triangular graph T(8), the line graph of the complete graph on eight vertices. 

A graph with 36 vertices, maximal valency 28, and smallest eigenvalue -2 
which is not a generalized line graph can, e.g., be obtained by adding to K8 + 
L(K8) edges joining i E K8 with jk e L(K8) whenever i 0 {j, k}; a (2, 1, 0)- 
representation in E8 is given by the vectors 2(fi + + f8) - f (i < 8) 
and f + fj (i < j < 8), where f,..., f8 are obtained from el, ..., e8 by 
reversing the sign of one ei. Thus, examples satisfying equality in (ii) of the 
theorem exist. 

If we restrict ourselves to regular graphs, sharper results are possible. Busse- 
maker, Cvetkovid, and Seidel [8], supported by a computer, used this theorem 
to show that, up to isomorphism, there are precisely 187 regular graphs with 
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smallest eigenvalue -2 (and none with 4in(F) > -2) which are not general- 
ized line graphs, namely 

4 graphs generating E6 (nos. 5, 185-187 in [8]), 
24 graphs generating E7 (nos. 19, 69, 164-184 in [8]), 

159 graphs generating E8 (the remaining ones). 

Reference [8] also contains explicit adjacency matrices and representations by 
roots of E8. To simplify the application of their results, we describe here 
the most important ones, and give (in Table 1) a list of relevant numerical 
invariants of these graphs. As shown in [8], all 187 graphs are subgraphs of 
the Gosset graph E7(1) with 56 vertices ei + ej, c - ei - ej (1 < i < j < 8), 
two vertices being adjacent if their inner product is 1. (Note that this defines 
not a representation in our sense, since (ei + ej, c - ei - ej) = -1; indeed, 
the smallest eigenvalue of E7(1) is -9. However, all subgraphs not containing 
such an antipodal pair of vertices are switching-equivalent to a line graph and 
hence have smallest eigenvalue > -2.) The Gosset graph is the skeleton of the 
Gosset polytope 321 (cf. Coxeter [15]), and is related to the 28 bitangents of 
a quartic surface (cf. Dickson [32]). A modern description of the structure of 
E7(1) is given by Taylor [39] in terms of a regular two-graph with 28 points. 
We are interested in the graphs En(1) (n = 1, ... , 6), the subgraphs of E17(1) 

induced on the set of common neighbors of ei + e8 (i = n + 1, ..., 7), and 
some other graphs. 

(i) The Schlafli graph E6(1) (no. 184 in Table 1) has the 27 vertices ei + 
e7,ei+e8 (i< 6), c-ei-ej (i <1?6) andvalency 16. Thegraph E6(1) 
is the complement of the point graph of the generalized quadrangle of order 
(2, 4) with 27 points, and is related to the 27 lines on a cubic surface (see 
Baker [1]; one easily recognizes a double six in the description given). 

(ii) The Clebsch graph E5 (1) (no. 187 in Table 1) has the 16 vertices e6 + 
e7, ei + e8 (i < 5), c - ei - ej (1 < j < 5) and valency 10. The comple- 
ment is a triangle-free graph obtained by identifying antipodal points of the 
5-dimensional cube. The graph E5 (1) contains two regular proper subgraphs 
which are not line graphs (nos. 185, 186 in Table 1); namely a graph with the 
12 vertices ei + e8 (i = 2, 3, 4), c - ei - ej (i < j < 5, (i, j) 7 (1, 5)) and 
valency 7, and a graph with the eight vertices e6 + e7, ei + e8 (i = 2, 3, 4), 
c - ei - ei+I (i < 4) and valency 4 (cf. Figure 2). 

(iii) The graph E4(1) is isomorphic to the triangular graph T(5) with ten 
vertices and valency 6. 

(iv) The Petersen graph (no. 5 in Table 1) has ten vertices and valency 3. It 
is obtained from the triangular graph T(5) with vertices ei + ej (i < j < 5) 
by switching with respect to {e, + ej I i, j < 5, j i + 1 (mod 5)}. This graph 
is strongly regular with parameters (v, k, A, ,u) = (10, 3, 0, 1). 

FIGURE 2. A subgraph of the Clebsch graph. 
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(v) The Shrikhande graph L (4) (no. 69 in Table 1) has 16 vertices and 
valency 6. It is obtained from the (4 x 4)-grid L2(4) with vertices ej + ej 
(i < 4 < ) by switching with respect to {ej +ei+4 i < 4}. This graph is strongly 
regular with the same parameters (v, k, A, ,u) = (16, 6, 2, 2) as L2(4) (cf. 
Shrikhande [37]). It is a quotient of the triangular lattice in R2. 

(vi) The three Chang graphs T'(8), T"(8), T"'(8) (nos. 161-163 in Table 
1) have 28 vertices and valency 12. They are obtained from the triangular graph 
T(8) with vertices ej + ej (i < j < 8) by switching with respect to one of the 
sets 

{e1+ei+4 1I < i<4} for T'(8), 
{e + ej1 1 < i < 8, j _ i + 1 (mod 8)} for T"(8), 

{e, + e2, e2 + e3, e3 + ej, e4 + e5, e5 + e6, e6 + e7, e7 + e8, e8 + e4} 

for T"'(8). 

These graphs are all strongly regular with the same parameters (v, k, A, ,u) = 
(28, 12, 6, 4) as T(8) (cf. Chang [11, 12], and Seidel [36] for equivalence 
under switching). 

The information collected by Bussemaker et al. [8] about the 187 regular 
exceptional graphs can be summarized together with the analysis of regular 
generalized line graphs in Cameron et al. [10] in the following theorem. 

1.2. Theorem. Let F be a connected regular graph with v points, valency k, 
and smallest eigenvalue > -2. Then one of the following holds: 

(i) F is the line graph of a regular or a bipartite semiregular connected graph 
A. 

(ii) v = 2(k + 2) < 28, and F is a subgraph of E7(1), switching-equivalent 
to the line graph of a graph A on eight vertices, where all valencies of A have 
the same parity (graphs nos. 1- 163 in Table 1). 

(iii) v = 2(k + 2) < 27, and F is a subgraph of the Schlafli graph (graphs 
nos. 164-184 in Table 1). 

(iv) v = 4(k + 2) < 16, and F is a subgraph of the Clebsch graph (graphs 
nos. 185-187 in Table 1). 

(v) v =k+2, and F Kmx2 for some m > 3. 
Moreover, L+(F) - An if and only if (i) holds with a bipartite graph A with 

n + 1 vertices, and L+(F) _ Dn if and only if either (i) holds with a graph A 
with n vertices with is not bipartite or (v) holds with m = n - 1. 

New and computer-free proofs of Theorems 1.1 and 1.2 are contained in 
Brouwer, Cohen and Neumaier [6]. 

A glance through Table 1, together with a straightforward analysis of line 
graphs, leads to the following application of the preceding result, which gener- 
alizes the characterization of strongly regular graphs with smallest eigenvalue 
-2 by Seidel [36]. 

1.3. Theorem. Let F be a connected regular graph with smallest eigenvalue 
-2. 

(i) If F is strongly regular, then F is a triangular graph T(n), a square grid 
n x n (also called a lattice graph L2(n)), a complete multipartite graph Knx2, 
or one of the graphs of Petersen, Clebsch, Schlafli, Shrikhande, or Chang. 
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(ii) If F is edge-regular, then F is strongly regular or the line graph of a 
regular triangle-free graph. 

(iii) If F is amply regular, then F is strongly regular or the line graph of a 
regular graph of girth > 5. 

(iv) If F is coedge-regular, then F is strongly regular, an (m x n)-grid, or 
one of the two regular subgraphs of the Clebsch graph with eight and 12 vertices, 
respectively. 

The multiplicity of the eigenvalue -2 of a graph with Amin(F) > -2 can 
be found quite easily from the following results of Doob [19] (case (i)) and 
Cvetkovid, Doob, and Simid [18] (case (ii)). 

1.4. Theorem. Let r be a connected graph with 4min(F) > -2. 
(i) If F is the line graph of a graph A with n vertices and e edges, then -2 

is an eigenvalue of F with multiplicity e - n + 1 if A is bipartite, and e - n 
otherwise. 

(ii) If F = L(A; a1, ..., an) (Zhai > 0) is a generalized line graph of a 
graph A with n vertices and e edges, then -2 is an eigenvalue of multiplicity 
e - n + E ai. 

(iii) If L+(F) _ En (n = 6, 7, 8), then -2 is an eigenvalue of multiplicity 
Fl - n. 

The case when the multiplicity of -2 is zero corresponds to the graphs F 
with imin(F) > -2. Since Amin(F) > -2 implies that A + 2I is positive 
definite, so that F is represented by a linearly independent set of roots, we get 
the following results of Doob and Cvetkovid [21]. 

1.5. Theorem. Let F be a connected graph with Amin(F) > -2. Then F is one 
of the following cases: 

(i) The line graph of a connected graph without cycles of even length and with 
at most one cycle of odd length. 

(ii) The generalized line graph L(A; 1, 0, ..., 0) obtained from the line 
graph of a tree A by adding two nonadjacent vertices oo+, oo- which are adja- 
cent with all edges of A containing a fixed vertex oc of A. 

(iii) A graph represented by a set of n E {6, 7, 8} linearly independent roots 
generating En 

1.6. Corollary. A connected regular graph with smallest eigenvalue > -2 is a 
complete graph or a polygon with an odd number of vertices. 

Calculations of the first author (quoted in [21]) imply that, up to isomor- 
phism, there are precisely 573 graphs of the form (iii), namely 

20 graphs with six vertices generating E6, 

1 10 graphs with seven vertices generating E7, 

443 graphs with eight vertices generating E8. 

Their adjacency matrices and smallest eigenvalues are listed in Table 2. The 20 
graphs with six vertices generating E6 are drawn in Figure 3 (see next page). 
It is a useful fact that every graph with n vertices generating En (n = 7, 8) 
contains a subgraph with n - I vertices generating En1 . It would be interesting 
to have a simple explanation of this fact. 
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2.1 = * * I 2.11 =G23 

2.2=G19 2.12=G24 

2.3=G12 2.13=G27 

2.4=G15 2.14=G G17 

2.5 =G20 2 
2.15=G 

2.6= G21 2.16= G25 

2.7=G22 2.17=G 

2.8= G 2.18=G14 

2.9 =G13 2.19=G30 

2.10=G28 2.20=G31 c 

FIGURE 3. The graphs with six vertices generating E6. 
(2.i is graph number i in Table 2; G, is the notation of 
[ 18].) G12- G17 are the minimal forbidden line graphs 
with six vertices. 

As another consequence of Theorem 1.4 we determine the minimal graphs 
with smallest eigenvalue -2. The proof is straightforward and left to the reader. 

1.7. Theorem. Let F be a connected graph with imin(F) = -2 such that 
Amin(F') > -2 for all proper subgraphs F' of F. If F is a generalized line 
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3 9-l~~- 

C2m + 1 +2 

+c1n+10 

C2m + 11 -22*+ 2m?1 

Pi 

.. 2-2 lC2m + 1 T1 I '?22, 

Pi Pi 

FIGURE 4. The minimal generalized line graphs with 
smallest eigenvalue -2 and associated eigenvectors (C1 
is a cycle with i > 3 vertices, Pi a path with i > 1 
vertices). 

graph, then F is one of the graphs drawn in Figure 4. Otherwise, F contains 
n + 1 vertices (n E {6, 7, 8}) and has a representation by roots of En. 

There are precisely 777 minimal graphs F with smallest eigenvalue -2 which 
are not generalized line graphs, namely 

12 graphs with seven vertices generating E6, 
79 graphs with eight vertices generating E7, 

686 graphs with nine vertices generating E8. 

Their adjacency matrices are listed in Table 3 together with an eigenvector be- 
longing to the eigenvalue -2, normalized such that its absolutely smallest en- 
tries have the value +1 . It is a useful fact that the normalized eigenvectors 
(belonging to A = -2) of all minimal graphs with smallest eigenvalue -2 are 
integral, and it implies that one can delete a vertex whose normalized eigen- 
vector coefficient is + 1 without changing the lattice generated. It would be 
interesting to have a simple explanation of this fact. 

A reader who wants to check the information given for the exceptional graphs 
in Theorem 1.5 and Theorem 1.7 can use the fact that a quadrangle has smallest 
eigenvalue -2; thus it is sufficient to check all graphs F with v < 9 vertices 
and without quadrangles for their smallest eigenvalue, and if A)min(F) = -2 to 
determine the multiplicity of -2 (F is minimal if and only if -2 is a simple 
eigenvalue and the corresponding eigenvector contains no zero entry). 
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la 
-1 1 

1 -2 1 
-1 1 

-1 1 

10 1 ~ ~1 -1 1 

-1 1 M 

M4 M6 

-1 1 -1 1 

M7 

FIGURE 5. The minimal graphs with smallest eigenvalue 
-2 and v < 6 vertices, and associated eigenvectors. 

2. MINIMAL FORBIDDEN SUBGRAPHS 

Let ' be a class of graphs such that if F is in ' then every subgraph of 
F is also in S. A minimal forbidden subgraph for ' is a graph F f ' all 
of whose proper subgraphs are in S. A complete list of minimal forbidden 
subgraphs is a list # of pairwise nonisomorphic minimal forbidden subgraphs 
for ' such that every graph f ' contains a subgraph isomorphic to some 
graph of 91. Thus, F E ' if and only if F contains no subgraph isomorphic 
to some graph of hi; in particular, if 91 is a known finite list, then we have 
an obvious finite algorithm for deciding whether a given graph is in ' or not. 

A complete list of minimal forbidden subgraphs for the class Y of line 
graphs has been found by Beineke [3] (who also gives credit to unpublished 
work by N. Robertson). The list Y* consists of nine graphs, the 3-claw K, 3 
(with four vertices), the two graphs drawn in Figure 1 (with five vertices), and 
the graphs G12-G17 in Figure 3 (with six vertices). 

A complete list of minimal forbidden subgraphs for the class 26 of gener- 
alized line graphs has been found independently by Rao, Singhi, and Vijayan 
[35] and Cvetkovid, Doob, and Simid [18]. The list 2# consists of 31 graphs, 
namely the 20 graphs drawn in Figure 3 and the 11 graphs drawn in Figure 
6. Their adjacency matrices and smallest eigenvalues are given as the first 20 
entries of Table 2 and the first 11 entries of Table 4. 

We discuss some properties of the list o 
1. The minimal forbidden subgraphs F for 20 with Amin(F) > -2 are 

precisely the graphs represented by a set of linearly independent generators for 
the lattice E6. Indeed, L+ (F) ? An or Dn, since F is not a generalized line 
graph. Moreover, L+(F) ? E7 or E8, since (as observed above) any set of 
linearly independent generators for E7 and E8 contains a subset generating 
E6 . 
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4.1= G2 * \ 47=G6 
-2.135779 -2.086130 * 

4.2= G3 4.8 = G8 
-2.449490 -2.123467 * 

* ~~~~~~~~~~~~* 
4.3=G1 Q 4.9= G9 * 
-2.177410 -2.372281 * * 

4.4=G4 * 4.10=G1O 
-2.074313 -2.141336 

4.5 =G7 4.11 = G1 
-2.112911 -2.162278 

4.6=G5 
-2.236068 * 

FIGURE 6. The minimal graphs with smallest eigenvalue 
< -2 and up to six vertices, and their smallest eigen- 
value. A vertex is starred when its deletion leaves a 
graph with smallest eigenvalue -2. (4.i is graph num- 
ber i in Table 4; Gi is the notation of [18].) 

2. There is no minimal forbidden subgraph for YO with Amin(F) = -2. In- 
deed, as observed above, the minimal graphs F with smallest eigenvalue -2 
have a proper subgraph generating the same lattice as F. (Note that the argu- 
ment given in Cvetkovi6 et al. [18, Corollary 4.2] to prove Amin(F) :$ -2 for 
F E Y.# is incorrect, since it does not cover the case where some F\ {y} is 
disconnected or generates An; however, their argument can be replaced by the 
simple fact that such a F would have at most nine vertices and thus is ruled 
out by McKay's computer search mentioned in Proposition 4.5 of [18].) 

3. The set of minimal forbidden subgraphs for YO with Amin(F) < -2 co- 
incides with the set of minimal graphs with smallest eigenvalue < -2 and at 
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most six vertices. Indeed, if T is a graph with Amin(F) < -2 and at most six 
vertices, then F\{y} generates a lattice of dimension < 5, hence A, or D, , 
so that each F\{y} is a generalized line graph and F e Y0#. However, the 
remarkable fact that there are no graphs in Y0 with Amin () < -2 and more 
than six vertices has not yet found a simple explanation. 

4. Every minimal forbidden subgraph for Y with Armin(F) < -2 contains 
one of the minimal graphs with smallest eigenvalue -2 and < 5 vertices (cf. 
Figure 5). Again, a simple explanation is missing. 

Rao et al. [35] observed that the complete list of minimal forbidden subgraphs 
for the class -2 of graphs with smallest eigenvalue > -2 is finite, since Y01 is 
finite and there are only finitely many graphs in g-2\Y2 (by Theorem 1.1). In 
particular, g#2\O# consists of graphs with at most 37 vertices. Kumar, Rao, 
and Singhi [30] improved this estimate by showing that the maximal number 
of vertices of a graph in 9I12 is ten. (Note, however, that the graph with ten 
vertices they give is not in 0#2 .) They also determine the graphs in #2 with at 
most seven vertices (see Figures 6 and 7), but incorrectly state that 9'2 contains 
more than 100 graphs with eight vertices. Their complicated arguments were 
simplified in Vijayakumar [44]. We shall give a new proof of the results in [35] 
and [30], together with a complete list #2, based on the following variation 
of Lemma 4.3 of Cvetkovi6, Doob, and Simi6 [18]. 

2.1. Proposition. Let F be a minimal forbidden subgraph for the class SLm 
of graphs with smallest eigenvalue > -m (m > 1). Then for any two distinct 
vertices y, a e F, the graph F\{y, 5 } has smallest eigenvalue > -m . 

Proof. Let v be the number of vertices of F, and denote by p(x) and pa(x) 
(ae E F) the characteristic polynomials of F and F\{a}, respectively. By 
Clarke [14], the derivative p'(x) can be expressed as p'(x) = ZaEEFP(x). 
Since F e 9m' all proper subgraphs of F have smallest eigenvalue > -m; 
in particular, (- l)v-1p(x) is positive for all x < -mi. Hence, (-l)v-1p(x) 
is strictly increasing for x < -m, and since Amin(F) < -m, it follows that 
Amin(F) is a simple eigenvalue of F and all other eigenvalues are > -m. 

Now suppose that F' = F\{y, a} has smallest eigenvalue < -m (and hence 
equal to -m) . Let z = (z, a E F') be a corresponding eigenvector, and denote 
by XC, d the vector x = (x, Ia e F) with x. = c, y5 = d, x, = za for a E I/ . 
Writing A for the adjacency matrix of F, we have T 40(A + mI)xo, o = 0, and 
therefore 

xC'O(A+mI)xco=c2m+ 2c E xa. 
aEr(y) 

a$56 

Since F\{y} has smallest eigenvalue > -im, this expression must be nonnega- 
tive for all c E R, and this is possible only if ZaEF(y) a,> XI = 0. By the same 
reasoning we find that ZaEr(3) aj7&x, 

= 0. Now, by construction of z, we 
find the relation (A + mI)xo,o = 0, which is impossible, since -m is not an 
eigenvalue of F. Therefore, the smallest eigenvalue of F\{yy, 5} is > -mi. E 

In the special case -m = -2, this result can be combined with the results 
of ? 1 and yields the following restrictions on graphs in #2 . 
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4.12 4.19 
-2.101003 -2.081831 

* 

4.13 4.20 A d47Y_ 
-2.052881 -2.098184 

4.14 * 4.21 * 

-2.124885 -2.077233 

4.15 4.22 
-2.058959 

* 
-2.088647 

4.16*2 
-2.070503 4.23 

-2.106332 

4.17 4.24 I* 
-2.067447 -2.119915 

4.18 *4.25 
-2.074850 -2.134889 

FIGURE 7. The minimal graphs with smallest eigenvalue 

< -2 and seven vertices, and their smallest eigenvalue. 

A vertex is starred when its deletion leaves a graph with 

smallest eigenvalue -2. (4.i is graph number i in Table 

4.) 

2.2. Theorem. Let F be a graph with v vertices, and suppose that F is a 
minimalforbidden subgraph for the class 9-2 of graphs with smallest eigenvalue 
> -2. Then every subgraph of F with smallest eigenvalue -2 has v -1 vertices, 
and one of the following holds: 
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(i) v < 10, and there exists a vertex y E F such that F\{y} is a minimal 
graph with smallest eigenvalue -2. 

(ii) v E {7, 8, 9}, Amin(F\{y}) > -2 for every vertex y E F, and for some 
y E F, the graph F\{y} has a representation by n = v - 1 linearly independent 
roots generating En. 
Proof. We showed already that subgraphs with smallest eigenvalue -2 have 
v - 1 vertices. To prove the remainder, we distinguish two cases. 

Case 1. All proper subgraphs of F with v - 1 vertices are generalized line 
graphs. Then F is a minimal forbidden subgraph for Yo with smallest eigen- 
value < -2, and hence one of the graphs of Figure 6. This implies that F 
satisfies (i). 

Case 2. The graph F contains a subgraph F\{5} which is not a generalized 
line graph. Then L+(F\{5}) Ev-1 ; in particular, F\{y, 5}, having smallest 
eigenvalue > -2, is represented by v - 2 linearly independent roots of En C 
E8, so that v < 10. If F contains a vertex y E F such that Amin(F\{Y}) = -2, 
then F\{y} is a minimal graph with this property and (i) holds. Otherwise, 
F\ {5} is represented by v - 1 linearly independent roots generating Ev-, 
and F satisfies (ii). EU 

In particular, a comparison with Figure 5 yields: 

2.3. Corollary. Let F be a graph in #2 with v vertices. If v > 5, then F 
contains no quadrangle; if v > 6, then F contains no subgraph of the form M1 
(i < 3); and if v > 7, then F contains no subgraph of the form Mi (i < 7). 

Theorem 2.2 and the corollary now allow a reasonably fast determination of 
a complete list of forbidden subgraphs for -2 by computer. We have already 
seen that a graph F E 3?#2 with at most six vertices is a minimal forbidden 
subgraph and hence one of the 11 graphs in Figure 6. For graphs with more 
than six vertices, the fact that F contains no quadrangle drastically restricts the 
possibilities for extending subgraphs of F so that a systematic extension process 
together with checks on the smallest eigenvalues of F and the F\{y} yields a 
complete list in a reasonable time. (Several earlier trials to get a complete 
list turned out to be much too time consuming. The breakthrough was when 
Aart Blokhuis noticed that no minimal forbidden subgraph with six or seven 
vertices contained a quadrangle. After further experiments, this finally led to 
the corollary and then to the above theorem.) 

The result of the computer search was that a complete list of minimal for- 
bidden subgraphs for the class K2 of graphs with smallest eigenvalue > -2 
consists of 1812 graphs; cf. the following statistics (# = number of graphs in 
3?2 with v vertices). 

v 5 6 7 8 9 10 total 

# 3 8 14 67 315 1405 1812 

The adjacency matrices and smallest eigenvalues of the 1812 graphs in #2 are 
listed in Table 4. The graphs in 3?#2 with up to seven vertices are drawn in 
Figures 6 and 7. 
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4.27 

4.1 -2.028523 
-2.135779 

A* 

42.449490 43-2035648 

* 91 4.94 * 

* F F 4 > * ~~~~-2.0153 16 -2.074313 
203 

4.6 4.95 
-2.236068 -2.083968 

* 

4.12 * 4.408 * 

-2.101003 -2.006594 I 

4.13 4.409 * * 

-2.052881 -2.031442 '-'I 

* 

4.26** 
-2.042079 4.410 * 

-2.010173 ----- 

A* 

FIGURE 8. Minimal triangle-free graphs with smallest 
eigenvalue < -2 and their smallest eigenvalue. A ver- 
tex is starred when its deletion leaves a graph with small- 
est eigenvalue -2. (4.i is graph number i in Table 4.) 

An inspection of Table 4 shows that there are only 14 graphs in S#2 without 
triangles; they are drawn in Figure 8. The completeness of the list of triangle- 
free graphs in 2#2 can be established easily by hand on the basis of Theorem 
2.2 and its corollary. 

2.4. Theorem (Doob [20]). Let F be a graph with iAmin(F) < -2. Then F 
contains a minimal graph with smallest eigenvalue -2 and at most nine vertices. 
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p *----------- (n 2 1 vertices) 

>-I------ S (n 2 4 vertices) 

FIGURE 9. The graphs with largest eigenvalue < 2. 

Proof. The graph F contains a subgraph isomorphic to a graph in 9#2* In- 
spection of the list of Table 4 shows that each such graph contains a proper 
subgraph with smallest eigenvalue -2. 5 

Note that Doob [20] proved the theorem in a slightly different way, relying on 
computer calculations of Brendan McKay. It would be very interesting to have a 
computer-free proof of this result. By Theorems 2.2 and 2.4, the graphs in 7#2 
can be characterized as the graphs obtained by adding to a minimal graph with 
smallest eigenvalue -2 and < 9 vertices a new vertex oc and edges containing 
o0 in such a way that the eigenvector coefficients (with respect to the eigenvalue 
-2) of the neighbors of o0 do not sum up to zero. This follows from a similar 
argument as in the second part of the proof of Proposition 2.1. 

Let us digress for a moment and consider some related work on the largest 
eigenvalue of a graph. Denote by gm (m > 1) the class of graphs F with 
largest eigenvalue Amax(F) < m. The graphs in 92, listed in Figures 9 and 10, 
have been determined by Smith [38] (cf. also Lemmens and Seidel [31]); they 
are precisely the spherical and affine Dynkin diagrams for so-called simply-laced 
root systems (cf. Hiller [24]). 

A complete list of minimal forbidden subgraphs for 92 is easily established 
and can be deduced from the list of minimal hyberbolic Dynkin diagrams given 
in Chein [13] and Koszul [29]. The list g2" consists of 18 graphs, namely the 
13 bipartite graphs of Figure 8 (4.410 is not bipartite; Amin () = -Ahmax () if F 
is bipartite) and five further graphs drawn in Figure 11 which are not bipartite. 
The maximal number of vertices of graphs in 920 is ten. One can read off from 
Figures 8-11 that every graph not containing a graph with largest eigenvalue 2 
is contained in such a graph (cf. Doob [20]). 

For mn = -2?V = 2.058171 (= T3/2 = T1/2 + T-1/2, where = 

(1 + x/3)/2), 59 has been determined by Cvetkovi6, Doob, and Gutman [16] 
and Brouwer and Neumaier [7]. 9,qn consists of the paths, polygons, the trees 
YijI, Yi22, Y332 (where Yijk is the Y-shaped tree with a unique vertex of 
valency 3, the deletion of which leaves three disjoint paths with i, j, and k 
vertices), and the trees Hijk (X-shaped, consisting of a path with i+j+k- 1 ver- 
tices and two further vertices of valency 1 adjacent to the i th and (i+j)th vertex 
of the path), where ti > (Ti-2)(Tk-2) (i.e., j > i+k-cik , where c23 = 932 = 4, 
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(n ? 3 vertices) 

- _ <(n ?5 vertices) 

1 2 3 2 1 1 2 3 4 3 2 1 
*~ ~ *p * p * S 

22 

4 1 1 2 3 4 5 6 4 2 

p *1* * * * *3 

FIGURE 10. The graphs with largest eigenvalue 2, with 
a corresponding eigenvector. 

N1 N4 
2.170086 2.114908 

N2 N5 
2.561553 2.091184 

N3 , 
3.000000 ( 

FIGURE 11. The minimal graphs with largest eigenvalue 
> 2 which are not bipartite, and their largest eigenvalue. 
A vertex is starred when its deletion leaves a graph with 
largest eigenvalue -2. 

2i= 8i2 = 3 for i > 3, c33 = C34 = C43 = 2, 93i = 6i3 = 844 = 845 = 854 = 1, 
and Cik = 0 otherwise). It is remarkable that mn = SUP{/{max () I F E 9th} al- 
though no graph with Amax(F) = mn exists; in particular, this shows that the set 
of maximal eigenvalues of graphs is not closed. As observed by Hoffman [27], 
?t is infinite, since it contains all subgraphs obtained by adding a vertex of 
valency 1 to the vertices of a polygon (and mn is maximal with this property). 
It would be interesting to know the set of numbers m, -m such that g or 

_m are finite; however, these seem to be very difficult problems. 
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p p p p- p p p p 

FIGURE 12. The extremal graph Y621.- 

The fact that 9I1 and 9#~ are finite implies the existence of "eigenvalue 
gaps" at +2 in the following sense (cf. [23] for Amnax). 

2.5. Theorem. Let p 2.006594 be the largest solution of the equation 
(p3 _ p)2(p2 - 3) (p2 - 4) = 1 . Then there is no graph IF such that -p < 
A~min (F) < - 2 or 2 < Amax(F) < P. Moreover, every graph with iAmin (F) p 
or A3max(F) = p is isomorphic to the graph Y621.- 

Proof. Inspection of Table 5 shows that the only graph in 9I#2 with A~min(F) ? 
-P is Y621 , which has iAmin(F) = -p. Now every graph with iAmin(F) < -2 not 
in 9#2 contains a proper subgraph F' E 92 hene mnT <Ai P _-P 
If equality holds, then F' = Y621 , and all subgraphs of F strictly containing 
F' have -p as a multiple eigenvalue. In particular, the subgraph obtained 
by adjoining to F' one further vertex of F and deleting one of the vertices 
of F' again has -p as smallest eigenvalue, and hence must be isomorphic to 
Y621 . But no graph with 11I vertices has this property. Hence, A~min(F) P 
implies IF Y621. The statement about ,Lmax follows immediately, since Y621 
is bipartite and the nonbipartite minimal graphs with largest eigenvalue > 2 
(Figure 1 1) have largest eigenvalue > p. 5: 

For graphs with large minimum valency, the eigenvalue gap at -2 is con- 
siderably larger. The following highly nontrivial result was proved by Hoffman 
[26] using Ramsey's theorem. 

2.6. Theorem. Let '~k = SuPfi~min(F) I kmin(IF) > k, iAmin(IF) < -2}. Then 'Ak 
is a monotonic decreasing sequence with limit -1I - =~_ 2.414214. 

Theorem 2.5 implies the value -= -p = -2.006594. Lower bounds for 
the values of ,~i can be obtained from particular graphs with minimal valency 
k . In particular, we get 

1 -2 l1-3- 
A-2 ?> A2 = 

= -2.070368, 
since the clique extension of an n-cycle, where a single vertex is replaced by 
a 2-clique, provides a sequence of graphs F, with minimal valency 2 and 
A~min(Fi) -` ~2 for i -*oc. The graph of Figure 13 gives the lower bound 

where '~k is the smallest solution of the equation 
(X + 1)2(X + 2)(x + 3) + k(2X3 + 9X2 + lOx + 1) + k2X2+ 2x - 1) = 0. 

The reader is challenged to provide more extreme examples or to prove that 
the examples given are extremal. An explicit upper bound for 'Ak which tends 
to -1I- V'_2 for k --* oc would also be of considerable interest. In particular, for 

FIGURE 13. A graph with minimal valency k. 
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k-i 

FIGURE 14. A regular graph with valency k. 

applications to distance-regular graphs (see ?3), we would like to know whether 

Ak <-2.4 if k >64; 

note that 'k < -2.4 if k > 29.4. 
If we require that F is regular of large valency, then -1 - X seems no 

longer to be the right limit. Among the regular graphs of valency k, the largest 
value of ALminj(F) observed in a limited number of test cases occurred for the 
graph in Figure 14, where Amin(F) = -1 - ak with the largest zero ak of the 
equation x3+2x2+x-3-k(x2+2x-2) = 0, and limk +,(-I - ak) = -I -I . 

The result corresponding to Theorem 2.5 for the largest eigenvalue is trivial 
for minimal valency k > 2, since (by Perron-Frobenius theory) the largest 
eigenvalue of a graph F with minimal valency k is at least k, with equality if 
and only if the graph is regular of valency k. The more relevant value 

inf {imax (F) I kmin () > k, Amax(F) > k} 
= inf {,max(F) I F not regular, kmin(F) > k} 

is not known, not even for k = 2. 

3. APPLICATIONS TO DISTANCE-REGULAR GRAPHS 

In this section we apply the preceding results to a characterization problem in 
the theory of distance-regular graphs. A connected graph F is called distance- 
regular if for any two vertices y and (5 at distance i = d(y, (5), there are 
precisely ci neighbors of ( at distance i - 1 from y, and b, neighbors of ( 
at distance i + 1 from y (see Biggs [4], Bannai and Ito [2]). The sequence 

(1) i(F) = {bo, bi, ... , bd-1 ; C1, C2, ... , Cd}, 

where d is the diameter of F2, is called the intersection array of F. A funda- 
mental problem in the theory of distance-regular graphs is the characterization 
of known graphs by their intersection array. Recently, Paul Terwilliger and the 
second author achieved a breakthrough in this direction by utilizing the clas- 
sification of graphs with smallest eigenvalue -2 to settle this problem for a 
large class of intersection arrays containing those for the Hamming graphs, the 
Johnson graphs, and the half-cubes (Terwilliger [41], Neumaier [34]). Here we 
show that knowledge of the eigenvalue gap in Theorem 2.4 allows the charac- 
terization of distance-regular graphs for another class of intersection arrays, at 
least for large diameter. We begin by summarizing the background needed. 
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The adjacency matrix A of a distance-regular graph F of diameter d has 
precisely d + 1 distinct eigenvalues 00 > 01 > ... > Od; the largest eigenvalue 
00 is the valency k = bo of F and has multiplicity 1. To each eigenvalue 
0 of F there corresponds a unique idempotent matrix E in the algebra of 
polynomials in A satisfying the equation AE = OE, and the rank f of E 
agrees with the multiplicity of 0. The (y, ()-entries Ey5 of E depend only 
on the distance of y and 6, 

(2) Ey, = ui if d(y, ) = i, 

and the us satisfy the recurrence relations 

uo= 1, ul = 6/k, 

(3) ciui_1 + aiui + biui+1 = us (i = 1, ... ., d- 1), 
CdUd-1 + adUd = OUd, 

where ai = k - bi - ci. Conversely, if (3) holds, then 0 is an eigenvalue of A 
and (2) defines the corresponding idempotents. These facts can be found, e.g., 
in [2, 4, 6]. Since an idempotent symmetric matrix is positive semidefinite, E 
can be considered as the Gram matrix of a set of vectors in Rf ; hence, there 
is a mapping -: F -* Rf such that the images 2, (5 of two vertices y, (5 E F 
have inner product 

(?,3) = ui if d(y, 5) = i. 

From this graph representation in Rf it is possible to deduce the following 
result concerning the smallest eigenvalues of the local subgraphs F(y): 

3.1. Proposition (Terwilliger [43]). Let F be a distance-regular graph with in- 
tersection array (1), and suppose that 0 is an eigenvalue of F with multiplicity 
f. If -1 <0< k, then 

(4) iAmin(F(Y)) > -b1/(6 + 1) for all y E F. 

Moreover, if f < k, then (4) holds with equality, 0 is the second-largest eigen- 
value of F, and either 0 + 1 is an integer dividing b1, or 0 + 1 and b1 /(6 + 1) 
are irrational quadratic algebraic integers. 
Proof. Inequality (4) is essentially Theorem 1(2) in [43]. The second assertion 
is part of Theorem 5 in [43], apart from the statement about equality in (4), 
which derives from the proof of that theorem. 5 

The following result of Terwilliger is also relevant in the present context. 

3.2. Proposition (Terwilliger [40]). Let F be a distance-regular graph with in- 
tersection array (1). 

(i) If F contains a quadrangle, then 

(5) ci - bi > ci-I - bi-, + a, + 2 (i = ,.. d). 

(ii) If C2 - b2 = cl - bi + a, + 1, then every 2-claw of F is in at most one 
quadrangle. 
Proof. (i) is in Terwilliger [40], and (ii) is a simple consequence of the simplified 
proof of (i) in Terwilliger [42]. 5 
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Terwilliger classified in [42] the distance-regular graphs satisfying (5) with 
equality for all i. Here we consider a class of intersection arrays which have 
equality in (5) for all i $ d, namely the arrays (1) defined by 

bi =l m- i) _ (m - i)(m - i - 2) (i = O. ..., d - 1), 

(6) ci,()ii2) dil -................ ,d1),5 

cd = Y(8(d)- d(d - 2)) 

where 

(d5 dy) E {( 2- 2) E (m 5 ) d >1 

Note that ji = c2 and m E {2d, 2d + I} are positive integers, m > 4. There 
are three families of distance-regular graphs realizing these arrays: 

(i) The folded m-cube with v = 2 2m vertices is the graph obtained by iden- 
tifying antipodal vertices in the m-cube, and realizes (6) with ju = 2. It can be 
described as the graph whose vertices are the partitions of an m-set into two 
sets, where two such partitions are adjacent whenever their common refinement 
contains two singletons. 

(ii) The folded Johnson graph with v = I (2m) vertices is the graph whose 
vertices are the partitions of a 2m-set into two m-sets, with adjacency defined 
as before. Its intersection array realizes (6) with ju = 4. 

(iii) The folded half 2m-cube with v = 122m-I vertices is the graph whose 
vertices are the partitions of a 2m-set into two sets of even size, where two such 
partitions are adjacent whenever their common refinement contains two sets of 
size 2. Its intersection array realizes (6) with ju = 6. 

In view of these examples, we call a distance-regular graph with intersection 
array (6) a pseudopartition graph. We shall prove the following characterization 
theorem. 

3.3. Theorem. Let F be a pseudopartition graph with diameter d. 
(i) If u = 2, then either F is a folded cube, or d = 3 and F is the incidence 

graph of a ( 16, 6, 2)-biplane. 
(ii) If d > 3, then uiE{2,4, 6}. 
(iii) If d > 154, then F is a folded cube, a folded Johnson graph, or a folded 

half-cube. 

Proof. We proceed in several steps. 

Step 1. F has an eigenvalue 0 = m - 4 + (u - 2) (m-2) with multiplicity 

m(m - 1)(2 + (I - 2)(m - 1))(4 + (u - 2)(2m - 5)) 
(7) f= (4 + (? - 2)(m - 2))(4 + (I - 2)(m - 3)) 

To show this, we note that the intersection array belongs to the family of Q- 
polynomial intersection arrays of type II discussed in Bannai and Ito [2], with 
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parameters (in the notation of [2]) 

m 1 m+2 2 
r2 - 2 r3 2 

h=2,u- 45 5= -m-21 2' s =-m-1. 

Therefore, the eigenvalues of F are given by 

Oi = k - 4i + (u-2)i(2i + I - 2m) (i = O. ... ., d), 

and their multiplicity is 

(8) fi=JJqj , 
j=1 

where 

bjyI (j+s)(2j+ I +s) (j+rl)(j+r2)(j+r3) 
C 1 j(2j-1 +s) (j+s-rl)(j+s-r2)(j+s-r3) 

In particular, since k = bo = u - m(m - 2) = (2 + (u - 2)(m - 1)), we get 
for i = 1 by simplification the above values 0 for 61 and f for fi. 

Step 2. If d > 3, then u 1, 3, 5. 
C3 > 0 excludes ji = 1. For ji = 3, (7) reduces to 

f _ m(m- 1)(2m- 1) 
(m + 2) 

so that m+2130. For d >3 (m >6) this leaves the cases m = 8, 13,28, 
and (8) yields a nonintegral f3, f4, f3 in the respective cases. And for ju = 5, 
(7) becomes 

_ m(m- 1)(3m- 1)(6m- 11) 
(3m - 2)(3m - 5) 

which is nonintegral for all m > 3, hence for d > 2. 

Step 3. If d > 3, then u E {2, 4, 6}. 
To get this, we apply Proposition 3.1; note that 0 < k and 0 + 1 =-3 b1 > 

0. Since m > 2d > 6 0 + 1 is no divisor of b2, and since 0 is rational, we 
must have f > k = m2(2 + (,u - 2)(m - 1)) . This implies 

2(m - 1)(4 + (,u - 2)(2m - 5)) < (4 + (,u - 2)(m - 2))(4 + (ji - 2)(m - 3)), 

which simplifies to (,u - 6)(m - 3)(2 + (,u - 2)(m - 2)) < 0. Therefore, ju < 6 
and thus ju E {2, 4, 6} by Step 2. 

Step 4. If ju = 2, then the conclusion of (i) holds. 
For m > 7 this follows from Egawa [22]. For m = 6, F has v = 32 

vertices and intersection array {6, 5, 4; 1, 2, 6}; hence, F is bipartite of di- 
ameter 3 and must be the incidence graph of a 2 - (v , k, ju)-design, i.e., of a 
(16, 6, 2)-biplane. For m = 4,5 , the graph F is easily seen to be K4 and 
K4,4, respectively, and hence a folded m-cube. 

Step 5. For any two nonadjacent vertices a, ,B E F(y)), the number ju(a , /B) of 
common neighbors of a and /B in F(y) is ,u - 1 or ,u - 2. 
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For, if ju(a, f8) < ju - 3, then there are two distinct vertices 5,5 ' E F2(Y) 
adjacent with a and f8 so that the 2-claw aoy,8 is in two distinct quadrangles, 
contradicting Proposition 3.2(ii). Since ju(a, f8) < u - 1 , this forces ju(a, f8) E 
{H - 1, ju - 2}. 

Step 6. Each neighborhood F(y) has smallest eigenvalue > -2 - m2-3. 

This follows from Proposition 3.1 since 

bi m - I1 2 
0+1 - mr-3 mr-3' 

Step 7. If d > 154, then each neighborhood F(y) is a line graph. 
In this case, m > 308 so that imin(F(y)) > -2 - 2 > -2.00656 > -p, 

and by Theorem 2.5, imin(F(Y)) > -2. Now F(y) is a regular graph with 
k = m (2 + u-2)(m - 1)) > M2 > 28 (since we may assume u > 4 by Steps 3 
and 4) vertices and valency a, = k - 1 - b1 < k - 2, and by Theorem 1.2, each 
F(y) must be a line graph. 

Step 8. If ju = 4, then each neighborhood F(y) which is a line graph is in fact 
an (m x m)-grid. 

By Step 5, the hypothesis of Proposition 5 of Neumaier [34] is satisfied with 
c = 2 for F(y) = L(A), and part (iii) of that proposition, together with the fact 
that F(y) contains k = m2 vertices and is regular of valency a, = k - 1 - b, = 
2(m - 1), only leaves the case A = Km,m. Therefore, F(y) = L(Km,m) is an 
(m x m)-grid. 

Step 9. If d > 154 and ,u = 4, then F is a folded Johnson graph. 
For F is locally an (m x m)-grid by Steps 7 and 8, and has the same intersec- 

tion array, hence the same number 2 ( 2m) of vertices as a folded Johnson graph. 
By Blokhuis and Brouwer [5], F is a quotient of a Johnson graph J(2mr, mi), 
and distance regularity forces that antipodal vertices (corresponding to comple- 
mentary m-sets) must be identified, so that F is a folded Johnson graph. 

Step 10. If ,u = 6, then each neighborhood F(y) which is a line graph is in fact 
a triangular graph T(2m). 

By Step 5, the hypothesis of Proposition 5 of Neumaier [34] is satisfied with 
c = 4 for F(y) _ L(A), and part (i) of that proposition, together with the fact 
that F(y) contains k = m(2m - 1) vertices, implies A = K2m and F(y) _ 
T(2m) . 

Step 1 1. If d > 154 and ,u = 6, then F is a folded half-cube. 
For F is locally T(2m) by Steps 7 and 10, and has the same intersection 

array, hence the same number 122m-1 of vertices as the folded half m-cube. 
Since d > 3 and m > 6, the vertices and m-cliques of F form a semibiplane, 
i.e., distinct vertices are in precisely zero or two blocks (m-cliques), and distinct 
blocks intersect in zero or two vertices. The incidence graph F* of this semibi- 
plane is an amply regular graph with A = 0 and ,u = 2. Application of Egawa 
[22] shows that F* is a folded 2m-cube, so that F is a folded half-cube. 5 

Together with the results of Terwilliger [41] (which inspired the first three 
steps of the preceding proof), this implies that for large diameters (d > 154), 
all Q-polynomial distance-regular graphs of type II are known. 



606 F. C. BUSSEMAKER AND A. NEUMAIER 

The diameter bound seems much too pessimistic, and there should be no 
exceptions for d > 4. In order to obtain assertion 3.3(iii) for d > 4 in place 
of d > 154, the argument of Step 7 has to be improved; since m > 8 for 
d > 4, we would need a result like 

F regular of valency k > 64 => 'min(F) < -2.4 or Amin(F) > -2. 

For d < 3, there are many exceptions: Husain [28] shows that there are pre- 
cisely three (16, 6, 2)-biplanes, and since each of them is self-dual, their inci- 
dence graphs give three nonisomorphic distance-regular graphs with intersection 
array {6, 5, 4; 1, 2, 6}, one of which is the folded 5-cube. Bussemaker et al. 
[9] show that there are at least 1853 strongly regular graphs with the same inter- 
section array { 16, 9; 1, 4} as the folded Johnson graph with v = 2(8) = 35 
vertices. Any pair of orthogonal Latin squares of order 8 gives a Latin square 
graph LS4 (8) with the same intersection array {28, 25; 1, 6} as the folded 
half 8-cube. Any Latin square of order 16 gives a Latin square graph LS3(16) 
with the same intersection array {45, 28; 1, 6} as the folded half 10-cube. 
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