EXCEPTIONAL GRAPHS WITH SMALLEST EIGENVALUE -2 AND RELATED PROBLEMS

F. C. BUSSEMAKER AND A. NEUMAIER

ABSTRACT. This paper summarizes the known results on graphs with smallest eigenvalue around -2, and completes the theory by proving a number of new results, giving comprehensive tables of the finitely many exceptions, and posing some new problems. Then the theory is applied to characterize a class of distance-regular graphs of large diameter by their intersection array.

INTRODUCTION

This paper presents a theory of graphs with smallest eigenvalue around -2 (in §§1 and 2, with tables in the appendix of the microfiche section) and their application to a characterization problem for distance-regular graphs (§3).

Apart from the classical line graph theorem of Cameron, Goethals, Seidel, and Shult [10]—which is introduced here in a new way by means of root lattices—and consequences of it observed by Bussemaker, Cvetković, Doob, Kumar, Rao, Seidel, Simić, Singhi, and Vijayan [8, 16, 18, 20, 21, 30, 35, 44], we obtain a number of new results, namely

(i) a classification of graphs Γ with smallest eigenvalue -2 such that Γ or its complement are edge-regular (Theorem 1.2),

(ii) a complete list of minimal graphs with smallest eigenvalue -2 (Theorem 1.7 and Table 3),

(iii) a complete list of minimal forbidden subgraphs for the class of graphs with smallest eigenvalue ≥ -2 (Table 4), and

(iv) the computation of the eigenvalue gap at -2 (Theorem 2.4).

The importance of the eigenvalue gap is demonstrated by the characterization of a class of distance-regular graphs (folded cubes, folded half-cubes, and folded Johnson graphs of large diameters) by their intersection arrays, in the spirit of earlier work of Terwilliger [41] and Neumaier [34].

The proofs for (i)-(iv) are based on extensive computer calculations which enumerate the finitely many exceptions arising from the exceptional root lattices (or root systems) E_6 , E_7 , and E_8 . We challenge the reader at several places to provide conceptional proofs of some remarkable observations deduced here from lists of graphs generated by computer. We also point out a number of open questions.

Notation. If Γ is a graph and S a set of vertices of Γ , we denote by $\Gamma \setminus S$ the

Received by the editor October 4, 1988.

¹⁹⁹¹ Mathematics Subject Classification. Primary 05C35; Secondary 05E99.

FIGURE 1. The two minimal forbidden line graphs with five vertices.

graph obtained by deleting from Γ the vertices in S and all edges containing a vertex of S. A subgraph of Γ always refers to an induced subgraph, i.e., a graph of the form $\Gamma \setminus S$. For a vertex $\gamma \in \Gamma$, $\Gamma(\gamma)$ denotes the subgraph induced on the set of neighbors of γ , and γ^{\perp} denotes the subgraph induced on the set consisting of γ and its neighbors. The relation \equiv defined by $\gamma \equiv \delta$ if and only if $\gamma^{\perp} = \delta^{\perp}$ is an equivalence relation on the set of vertices, and if we identify equivalent vertices, we obtain a reduced graph $\overline{\Gamma}$. Γ can be recovered from $\overline{\Gamma}$ as a *clique extension*, i.e., by replacing each vertex $\overline{\gamma}$ of $\overline{\Gamma}$ by a suitable clique $C_{\bar{\gamma}}$, and joining the vertices of $C_{\bar{\gamma}}$ with the vertices of $C_{\bar{\delta}}$ when $\bar{\gamma}$ and $\bar{\delta}$ are adjacent. We shall draw a clique extension of $\overline{\Gamma}$ by drawing vertices of $\overline{\Gamma}$ replaced by an *i*-clique as circles with label *i* if i > 1, and as black dots if i = 1 (cf. Figure 1). The *eigenvalues* of a graph Γ are the eigenvalues of its (0, 1)-adjacency matrix; the spectrum of Γ is the collection of its eigenvalues (together with their multiplicities). For a general discussion of graph spectra, see the book by Cvetković, Doob, and Sachs [17]. We denote the largest eigenvalue of Γ by $\lambda_{max}(\Gamma)$ and the smallest eigenvalue of Γ by $\lambda_{\min}(\Gamma)$. By interlacing (cf. [17]), we have for a subgraph Γ' of Γ the relations

$$\lambda_{\min}(\Gamma) \leq \lambda_{\min}(\Gamma'), \qquad \lambda_{\max}(\Gamma') \leq \lambda_{\max}(\Gamma).$$

The minimal valency of a graph Γ is denoted by $k_{\min}(\Gamma)$. A graph Γ is called *regular* if every vertex has the same valency k, *edge-regular* (*coedge-regular*) if Γ is regular and any two adjacent (nonadjacent) vertices have the same number λ (μ) of common neighbors, *amply regular* if Γ is edge-regular and any two vertices at distance 2 have the same number of common neighbors, and *strongly regular* if it is edge-regular and coedge-regular.

Since isomorphic graphs have the same spectrum, we do not distinguish between different isomorphic graphs.

1. Graphs with smallest eigenvalue ≥ -2

The well-known fact that all line graphs have smallest eigenvalue ≥ -2 prompted a great deal of interest in the characterization of certain classes of graphs Γ with $\lambda_{\min}(\Gamma) \geq \lambda^*$ for λ^* around -2. The work done on this problem culminated in a beautiful theory of Cameron, Goethals, Seidel, and Shult [10] who related the question to root systems. Together with computer calculations by Bussemaker, Cvetković, and Seidel [8], this theory implies a complete

classification of all regular graphs with smallest eigenvalue ≥ -2 , and, as noted by Doob and Cvetković [21], a classification of all graphs (whether regular or not) with smallest eigenvalue > -2. In this section we summarize these results, and give some numerical information on the exceptional graphs.

A root lattice is an additive subgroup \mathbb{L} of \mathbb{R}^n generated by a set X of vectors such that (x, x) = 2 and $(x, y) \in \mathbb{Z}$ for all $x, y \in X$; here, $(x, y) = \sum x_i y_i$ is the standard inner product in \mathbb{R}^n . The vectors in \mathbb{L} of norm (x, x) = 2 are called the *roots* of \mathbb{L} . A root lattice is called *irreducible* if it is not a direct sum of proper sublattices. Every irreducible root lattice is isomorphic to one of the lattices

$$A_n = \{x \in \mathbb{Z}^{n+1} \mid \sum x_i = 0\} \quad (n \ge 1),$$

$$D_n = \{x \in \mathbb{Z}^n \mid \sum x_i \text{ even}\} \quad (n \ge 4),$$

$$E_8 = D_8 \cup (c + D_8), \text{ where } c = \frac{1}{2}(1, 1, 1, 1, 1, 1, 1, 1),$$

$$E_7 = \{x \in E_8 \mid \sum x_i = 0\},$$

$$E_6 = \{x \in E_7 \mid x_7 + x_8 = 0\}$$

(cf. Witt [45], Cameron et al. [10], Neumaier [33]). In terms of basis vectors e_1, \ldots, e_n of \mathbb{Z}^n , the roots of A_n are the n(n+1) vectors

$$e_i - e_j$$
 $(1 \le i < j \le n+1),$

those of D_n are the 2n(n-1) vectors

$$\pm e_i \pm e_j \quad (1 \le i < j \le n),$$

and those of E_8 are the 240 = 112 + 128 vectors

$$\pm e_i \pm e_j \quad (1 \le i < j \le 8)$$

and, with an even number of + signs,

$$\frac{1}{2}(\pm e_1 \pm e_2 \pm e_3 \pm e_4 \pm e_5 \pm e_6 \pm e_7 \pm e_8).$$

From this, one finds that E_7 contains 126 = 56 + 70 roots and E_6 contains 72 = 32 + 40 roots.

If Γ is a connected graph with $\lambda_{\min}(\Gamma) > -2$ and adjacency matrix A, then G = A + 2I is a symmetric positive semidefinite matrix. Thus, G is the Gram matrix of a set X of vectors of \mathbb{R}^n , i.e., there is a bijection $-: \Gamma \to X$ such that

$$(\bar{\gamma}, \bar{\delta}) = \begin{cases} 2 & \text{if } \gamma = \delta, \\ 1 & \text{if } \gamma, \delta \text{ are adjacent,} \\ 0 & \text{otherwise.} \end{cases}$$

Such a mapping is called a spherical (2, 1, 0)-representation, and in this paper simply a *representation* of Γ . The additive subgroup $\mathbb{L}^+(\Gamma)$ generated by Xis a root lattice (whose isomorphism type depends on Γ but not on X), and since Γ is connected, $\mathbb{L}^+(\Gamma)$ is irreducible. This implies the basic observation of Cameron et al. [10] that every connected graph Γ with $\lambda_{\min}(\Gamma) \ge -2$ has a representation by roots of A_n $(n \ge 1)$, D_n $(n \ge 4)$, or E_n (n = 6, 7, 8). Conversely, if Γ is represented by roots of A_n , D_n , or E_n , then the Gram matrix A+2I of the image of Γ is positive semidefinite, so that $\lambda_{\min}(\Gamma) \ge -2$. The line graph of a graph Δ is the graph $L(\Delta)$ whose vertices are the edges of Δ , two edges being adjacent if they intersect. Generalized line graphs $L(\Delta, a_1, \ldots, a_m)$, introduced by Hoffman [25], are obtained from the line graph $L(\Delta)$ of a graph Δ with vertex set $\{1, \ldots, m\}$ by adding the vertices $(i, \pm l)$ $(i = 1, \ldots, m; l = 1, \ldots, a_i)$ and joining (i, l) with all vertices i, j of $L(\Delta)$ and all $(i, l'), l' \neq \pm l$. We get a representation of a generalized line graph by representing the vertices ij of $L(\Delta)$ by $e_i + e_j$ and the adjoined vertices $(i, \pm l)$ by $e_i \pm e_{(i,l)}, l = 1, \ldots, a_i$, where the $e_i, e_{(i,l)}$ form a set of orthonormal vectors. Moreover, if Δ is bipartite with bipartite parts A, B, then $L(\Delta)$ has also a representation by roots of A_{m-1} obtained by representing an edge ij with $i \in A, j \in B$ by $e_i - e_j$.

By analyzing the possible representations by roots of A_n and D_n , Cameron, Goethals, Seidel, and Shult [10] arrived at the following result.

1.1. **Theorem.** Let Γ be a connected graph with smallest eigenvalue ≥ -2 . Then one of the following holds:

(i) Γ is a generalized line graph.

(ii) Γ has a representation by roots of E_8 . The number v of vertices, and the average valency k, are restricted by $v \leq \min(36, 2k+8)$. Moreover, every vertex has valency at most 28.

An as yet unsolved problem is the characterization of the graphs under (ii). Since every subgraph of such a graph is again represented by roots of E_8 , it suffices to determine the (finitely many) maximal graphs under (ii) which are not generalized line graphs. It seems that most graphs under (ii) can be obtained by switching.

Switching a graph Γ with respect to a set S of vertices (or with respect to its complement S^c) is the operation of removing all edges of Γ between S and S^c and adding the new edges γ_1, γ_2 ($\gamma_1 \in S, \gamma_2 \in S^c, \gamma_1 \not\sim \gamma_2$) (cf. Seidel [36]). If Γ^1 is obtained from Γ by switching with respect to S_1 , and Γ^2 is obtained from Γ^1 by switching with respect to S_2 , then Γ^2 can be directly obtained from Γ by switching with respect to the symmetric difference $(S_1 \cap S_2) \cup (S_1^c \cap S_2^c)$. Therefore, switching defines an equivalence relation on the set of graphs with a given vertex set. If Γ is the line graph of a graph Δ with vertex set $\{1, 2, \ldots, 8\}$, then the graph Γ' obtained from Γ by switching with respect to S can be represented in E_8 by the roots $e_i + e_j$ (if ij is an edge $\notin S$) and $c - e_i - e_j$ (if ij is an edge in S); here, $c = \frac{1}{2}(e_1 + \cdots + e_8)$. Therefore, Γ' has smallest eigenvalue ≥ -2 . The maximal graphs obtainable from this construction are the graphs which are switching-equivalent to the triangular graph T(8), the line graph of the complete graph on eight vertices.

A graph with 36 vertices, maximal valency 28, and smallest eigenvalue -2 which is not a generalized line graph can, e.g., be obtained by adding to $K_8 + L(K_8)$ edges joining $i \in K_8$ with $jk \in L(K_8)$ whenever $i \notin \{j, k\}$; a (2, 1, 0)-representation in E_8 is given by the vectors $\frac{1}{2}(f_1 + \cdots + f_8) - f_i$ ($i \le 8$) and $f_i + f_j$ ($i < j \le 8$), where f_1, \ldots, f_8 are obtained from e_1, \ldots, e_8 by reversing the sign of one e_i . Thus, examples satisfying equality in (ii) of the theorem exist.

If we restrict ourselves to regular graphs, sharper results are possible. Bussemaker, Cvetković, and Seidel [8], supported by a computer, used this theorem to show that, up to isomorphism, there are precisely 187 regular graphs with smallest eigenvalue -2 (and none with $\lambda_{\min}(\Gamma) > -2$) which are not generalized line graphs, namely

- 4 graphs generating E_6 (nos. 5, 185–187 in [8]),
- 24 graphs generating E_7 (nos. 19, 69, 164–184 in [8]),
- 159 graphs generating E_8 (the remaining ones).

Reference [8] also contains explicit adjacency matrices and representations by roots of E_8 . To simplify the application of their results, we describe here the most important ones, and give (in Table 1) a list of relevant numerical invariants of these graphs. As shown in [8], all 187 graphs are subgraphs of the Gosset graph $E_7(1)$ with 56 vertices $e_i + e_j$, $c - e_i - e_j$ $(1 \le i < j \le 8)$, two vertices being adjacent if their inner product is 1. (Note that this defines not a representation in our sense, since $(e_i + e_j, c - e_i - e_j) = -1$; indeed, the smallest eigenvalue of $E_7(1)$ is -9. However, all subgraphs not containing such an antipodal pair of vertices are switching-equivalent to a line graph and hence have smallest eigenvalue ≥ -2 .) The Gosset graph is the skeleton of the Gosset polytope 3_{21} (cf. Coxeter [15]), and is related to the 28 bitangents of a quartic surface (cf. Dickson [32]). A modern description of the structure of $E_7(1)$ is given by Taylor [39] in terms of a regular two-graph with 28 points. We are interested in the graphs $E_n(1)$ (n = 1, ..., 6), the subgraphs of $E_7(1)$ induced on the set of common neighbors of $e_i + e_8$ (i = n + 1, ..., 7), and some other graphs.

(i) The Schläfli graph $E_6(1)$ (no. 184 in Table 1) has the 27 vertices $e_i + e_7$, $e_i + e_8$ ($i \le 6$), $c - e_i - e_j$ ($i < j \le 6$) and valency 16. The graph $E_6(1)$ is the complement of the point graph of the generalized quadrangle of order (2, 4) with 27 points, and is related to the 27 lines on a cubic surface (see Baker [1]; one easily recognizes a double six in the description given).

(ii) The Clebsch graph $E_5(1)$ (no. 187 in Table 1) has the 16 vertices $e_6 + e_7$, $e_i + e_8$ $(i \le 5)$, $c - e_i - e_j$ $(1 < j \le 5)$ and valency 10. The complement is a triangle-free graph obtained by identifying antipodal points of the 5-dimensional cube. The graph $E_5(1)$ contains two regular proper subgraphs which are not line graphs (nos. 185, 186 in Table 1); namely a graph with the 12 vertices $e_i + e_8$ (i = 2, 3, 4), $c - e_i - e_j$ $(i < j \le 5, (i, j) \ne (1, 5))$ and valency 7, and a graph with the eight vertices $e_6 + e_7$, $e_i + e_8$ (i = 2, 3, 4), $c - e_i - e_{j-1}$ $(i \le 4)$ and valency 4 (cf. Figure 2).

(iii) The graph $E_4(1)$ is isomorphic to the triangular graph T(5) with ten vertices and valency 6.

(iv) The Petersen graph (no. 5 in Table 1) has ten vertices and valency 3. It is obtained from the triangular graph T(5) with vertices $e_i + e_j$ ($i < j \le 5$) by switching with respect to $\{e_i + e_j \mid i, j \le 5, j \equiv i + 1 \pmod{5}\}$. This graph is strongly regular with parameters (ν , k, λ , μ) = (10, 3, 0, 1).

FIGURE 2. A subgraph of the Clebsch graph.

(v) The Shrikhande graph $L'_2(4)$ (no. 69 in Table 1) has 16 vertices and valency 6. It is obtained from the (4×4) -grid $L_2(4)$ with vertices $e_i + e_j$ $(i \le 4 < j)$ by switching with respect to $\{e_i + e_{i+4} \mid i \le 4\}$. This graph is strongly regular with the same parameters $(\nu, k, \lambda, \mu) = (16, 6, 2, 2)$ as $L_2(4)$ (cf. Shrikhande [37]). It is a quotient of the triangular lattice in \mathbb{R}^2 .

(vi) The three Chang graphs T'(8), T''(8), T'''(8) (nos. 161–163 in Table 1) have 28 vertices and valency 12. They are obtained from the triangular graph T(8) with vertices $e_i + e_j$ ($i < j \le 8$) by switching with respect to one of the sets

These graphs are all strongly regular with the same parameters $(\nu, k, \lambda, \mu) = (28, 12, 6, 4)$ as T(8) (cf. Chang [11, 12], and Seidel [36] for equivalence under switching).

The information collected by Bussemaker et al. [8] about the 187 regular exceptional graphs can be summarized together with the analysis of regular generalized line graphs in Cameron et al. [10] in the following theorem.

1.2. **Theorem.** Let Γ be a connected regular graph with v points, valency k, and smallest eigenvalue ≥ -2 . Then one of the following holds:

(i) Γ is the line graph of a regular or a bipartite semiregular connected graph Δ .

(ii) $v = 2(k + 2) \le 28$, and Γ is a subgraph of $E_7(1)$, switching-equivalent to the line graph of a graph Δ on eight vertices, where all valencies of Δ have the same parity (graphs nos. 1–163 in Table 1).

(iii) $v = \frac{3}{2}(k+2) \le 27$, and Γ is a subgraph of the Schläfli graph (graphs nos. 164–184 in Table 1).

(iv) $v = \frac{4}{3}(k+2) \le 16$, and Γ is a subgraph of the Clebsch graph (graphs nos. 185–187 in Table 1).

(v) v = k + 2, and $\Gamma \cong K_{m \times 2}$ for some $m \ge 3$.

Moreover, $\mathbb{L}^+(\Gamma) \cong A_n$ if and only if (i) holds with a bipartite graph Δ with n + 1 vertices, and $\mathbb{L}^+(\Gamma) \cong D_n$ if and only if either (i) holds with a graph Δ with n vertices with is not bipartite or (v) holds with m = n - 1.

New and computer-free proofs of Theorems 1.1 and 1.2 are contained in Brouwer, Cohen and Neumaier [6].

A glance through Table 1, together with a straightforward analysis of line graphs, leads to the following application of the preceding result, which generalizes the characterization of strongly regular graphs with smallest eigenvalue -2 by Seidel [36].

1.3. **Theorem.** Let Γ be a connected regular graph with smallest eigenvalue -2.

(i) If Γ is strongly regular, then Γ is a triangular graph T(n), a square grid $n \times n$ (also called a lattice graph $L_2(n)$), a complete multipartite graph $K_{n \times 2}$, or one of the graphs of Petersen, Clebsch, Schläfli, Shrikhande, or Chang.

(ii) If Γ is edge-regular, then Γ is strongly regular or the line graph of a regular triangle-free graph.

(iii) If Γ is amply regular, then Γ is strongly regular or the line graph of a regular graph of girth ≥ 5 .

(iv) If Γ is coedge-regular, then Γ is strongly regular, an $(m \times n)$ -grid, or one of the two regular subgraphs of the Clebsch graph with eight and 12 vertices, respectively.

The multiplicity of the eigenvalue -2 of a graph with $\lambda_{\min}(\Gamma) \ge -2$ can be found quite easily from the following results of Doob [19] (case (i)) and Cvetković, Doob, and Simić [18] (case (ii)).

1.4. **Theorem.** Let Γ be a connected graph with $\lambda_{\min}(\Gamma) \geq -2$.

(i) If Γ is the line graph of a graph Δ with *n* vertices and *e* edges, then -2 is an eigenvalue of Γ with multiplicity e - n + 1 if Δ is bipartite, and e - n otherwise.

(ii) If $\Gamma = L(\Delta; a_1, ..., a_n)$ $(\sum a_i > 0)$ is a generalized line graph of a graph Δ with n vertices and e edges, then -2 is an eigenvalue of multiplicity $e - n + \sum a_i$.

(iii) If $\mathbb{L}^+(\Gamma) \cong E_n$ (n = 6, 7, 8), then -2 is an eigenvalue of multiplicity $|\Gamma| - n$.

The case when the multiplicity of -2 is zero corresponds to the graphs Γ with $\lambda_{\min}(\Gamma) > -2$. Since $\lambda_{\min}(\Gamma) > -2$ implies that A + 2I is positive definite, so that Γ is represented by a linearly independent set of roots, we get the following results of Doob and Cvetković [21].

1.5. **Theorem.** Let Γ be a connected graph with $\lambda_{\min}(\Gamma) > -2$. Then Γ is one of the following cases:

(i) The line graph of a connected graph without cycles of even length and with at most one cycle of odd length.

(ii) The generalized line graph $L(\Delta; 1, 0, ..., 0)$ obtained from the line graph of a tree Δ by adding two nonadjacent vertices ∞^+ , ∞^- which are adjacent with all edges of Δ containing a fixed vertex ∞ of Δ .

(iii) A graph represented by a set of $n \in \{6, 7, 8\}$ linearly independent roots generating E_n .

1.6. Corollary. A connected regular graph with smallest eigenvalue > -2 is a complete graph or a polygon with an odd number of vertices.

Calculations of the first author (quoted in [21]) imply that, up to isomorphism, there are precisely 573 graphs of the form (iii), namely

20 graphs with six vertices generating E_6 ,

110 graphs with seven vertices generating E_7 ,

443 graphs with eight vertices generating E_8 .

Their adjacency matrices and smallest eigenvalues are listed in Table 2. The 20 graphs with six vertices generating E_6 are drawn in Figure 3 (see next page). It is a useful fact that every graph with n vertices generating E_n (n = 7, 8) contains a subgraph with n-1 vertices generating E_{n-1} . It would be interesting to have a simple explanation of this fact.

FIGURE 3. The graphs with six vertices generating E_6 . (2.*i* is graph number *i* in Table 2; G_i is the notation of [18].) $G_{12}-G_{17}$ are the minimal forbidden line graphs with six vertices.

As another consequence of Theorem 1.4 we determine the minimal graphs with smallest eigenvalue -2. The proof is straightforward and left to the reader.

1.7. **Theorem.** Let Γ be a connected graph with $\lambda_{\min}(\Gamma) = -2$ such that $\lambda_{\min}(\Gamma') > -2$ for all proper subgraphs Γ' of Γ . If Γ is a generalized line

FIGURE 4. The minimal generalized line graphs with smallest eigenvalue -2 and associated eigenvectors (C_i is a cycle with $i \ge 3$ vertices, P_i a path with $i \ge 1$ vertices).

graph, then Γ is one of the graphs drawn in Figure 4. Otherwise, Γ contains n+1 vertices $(n \in \{6, 7, 8\})$ and has a representation by roots of E_n .

There are precisely 777 minimal graphs Γ with smallest eigenvalue -2 which are not generalized line graphs, namely

12 graphs with seven vertices generating E_6 , 79 graphs with eight vertices generating E_7 , 686 graphs with nine vertices generating E_8 .

Their adjacency matrices are listed in Table 3 together with an eigenvector belonging to the eigenvalue -2, normalized such that its absolutely smallest entries have the value ± 1 . It is a useful fact that the normalized eigenvectors (belonging to $\lambda = -2$) of all minimal graphs with smallest eigenvalue -2 are integral, and it implies that one can delete a vertex whose normalized eigenvector coefficient is ± 1 without changing the lattice generated. It would be interesting to have a simple explanation of this fact.

A reader who wants to check the information given for the exceptional graphs in Theorem 1.5 and Theorem 1.7 can use the fact that a quadrangle has smallest eigenvalue -2; thus it is sufficient to check all graphs Γ with $v \leq 9$ vertices and without quadrangles for their smallest eigenvalue, and if $\lambda_{\min}(\Gamma) = -2$ to determine the multiplicity of -2 (Γ is minimal if and only if -2 is a simple eigenvalue and the corresponding eigenvector contains no zero entry).

FIGURE 5. The minimal graphs with smallest eigenvalue -2 and $v \le 6$ vertices, and associated eigenvectors.

2. MINIMAL FORBIDDEN SUBGRAPHS

Let \mathscr{G} be a class of graphs such that if Γ is in \mathscr{G} then every subgraph of Γ is also in \mathscr{G} . A minimal forbidden subgraph for \mathscr{G} is a graph $\Gamma \notin \mathscr{G}$ all of whose proper subgraphs are in \mathscr{G} . A complete list of minimal forbidden subgraphs is a list $\mathscr{G}^{\#}$ of pairwise nonisomorphic minimal forbidden subgraphs for \mathscr{G} such that every graph $\notin \mathscr{G}$ contains a subgraph isomorphic to some graph of $\mathscr{G}^{\#}$. Thus, $\Gamma \in \mathscr{G}$ if and only if Γ contains no subgraph isomorphic to some an obvious finite algorithm for deciding whether a given graph is in \mathscr{G} or not.

A complete list of minimal forbidden subgraphs for the class \mathcal{L} of line graphs has been found by Beineke [3] (who also gives credit to unpublished work by N. Robertson). The list $\mathcal{L}^{\#}$ consists of nine graphs, the 3-claw $K_{1,3}$ (with four vertices), the two graphs drawn in Figure 1 (with five vertices), and the graphs $G_{12}-G_{17}$ in Figure 3 (with six vertices).

A complete list of minimal forbidden subgraphs for the class \mathscr{L}_0 of generalized line graphs has been found independently by Rao, Singhi, and Vijayan [35] and Cvetković, Doob, and Simić [18]. The list $\mathscr{L}_0^{\#}$ consists of 31 graphs, namely the 20 graphs drawn in Figure 3 and the 11 graphs drawn in Figure 6. Their adjacency matrices and smallest eigenvalues are given as the first 20 entries of Table 2 and the first 11 entries of Table 4.

We discuss some properties of the list $\mathscr{L}_0^{\#}$.

1. The minimal forbidden subgraphs Γ for \mathscr{L}_0 with $\lambda_{\min}(\Gamma) > -2$ are precisely the graphs represented by a set of linearly independent generators for the lattice E_6 . Indeed, $\mathbb{L}^+(\Gamma) \not\cong A_n$ or D_n , since Γ is not a generalized line graph. Moreover, $\mathbb{L}^+(\Gamma) \not\cong E_7$ or E_8 , since (as observed above) any set of linearly independent generators for E_7 and E_8 contains a subset generating E_6 .

FIGURE 6. The minimal graphs with smallest eigenvalue < -2 and up to six vertices, and their smallest eigenvalue. A vertex is starred when its deletion leaves a graph with smallest eigenvalue -2. (4.*i* is graph number *i* in Table 4; G_i is the notation of [18].)

2. There is no minimal forbidden subgraph for \mathscr{L}_0 with $\lambda_{\min}(\Gamma) = -2$. Indeed, as observed above, the minimal graphs Γ with smallest eigenvalue -2 have a proper subgraph generating the same lattice as Γ . (Note that the argument given in Cvetković et al. [18, Corollary 4.2] to prove $\lambda_{\min}(\Gamma) \neq -2$ for $\Gamma \in \mathscr{L}_0^{\#}$ is incorrect, since it does not cover the case where some $\Gamma \setminus \{\gamma\}$ is disconnected or generates A_n ; however, their argument can be replaced by the simple fact that such a Γ would have at most nine vertices and thus is ruled out by McKay's computer search mentioned in Proposition 4.5 of [18].)

3. The set of minimal forbidden subgraphs for \mathscr{L}_0 with $\lambda_{\min}(\Gamma) < -2$ coincides with the set of minimal graphs with smallest eigenvalue < -2 and at most six vertices. Indeed, if Γ is a graph with $\lambda_{\min}(\Gamma) < -2$ and at most six vertices, then $\Gamma \setminus \{\gamma\}$ generates a lattice of dimension ≤ 5 , hence A_n or D_n , so that each $\Gamma \setminus \{\gamma\}$ is a generalized line graph and $\Gamma \in \mathcal{L}_0^{\#}$. However, the remarkable fact that there are no graphs in \mathcal{L}_0 with $\lambda_{\min}(\Gamma) < -2$ and more than six vertices has not yet found a simple explanation.

4. Every minimal forbidden subgraph for \mathscr{L}_0 with $\lambda_{\min}(\Gamma) < -2$ contains one of the minimal graphs with smallest eigenvalue -2 and ≤ 5 vertices (cf. Figure 5). Again, a simple explanation is missing.

Rao et al. [35] observed that the complete list of minimal forbidden subgraphs for the class \mathscr{G}_{-2} of graphs with smallest eigenvalue ≥ -2 is finite, since $\mathscr{L}_0^{\#}$ is finite and there are only finitely many graphs in $\mathscr{G}_{-2} \backslash \mathscr{L}_2$ (by Theorem 1.1). In particular, $\mathscr{G}_{-2}^{\#} \backslash \mathscr{L}_0^{\#}$ consists of graphs with at most 37 vertices. Kumar, Rao, and Singhi [30] improved this estimate by showing that the maximal number of vertices of a graph in $\mathscr{G}_{-2}^{\#}$ is ten. (Note, however, that the graph with ten vertices they give is *not* in $\mathscr{G}_{-2}^{\#}$.) They also determine the graphs in $\mathscr{G}_{-2}^{\#}$ with at most seven vertices (see Figures 6 and 7), but incorrectly state that $\mathscr{G}_{-2}^{\#}$ contains more than 100 graphs with eight vertices. Their complicated arguments were simplified in Vijayakumar [44]. We shall give a new proof of the results in [35] and [30], together with a complete list $\mathscr{G}_{-2}^{\#}$, based on the following variation of Lemma 4.3 of Cvetković, Doob, and Simić [18].

2.1. **Proposition.** Let Γ be a minimal forbidden subgraph for the class \mathscr{G}_{-m} of graphs with smallest eigenvalue $\geq -m$ $(m \geq 1)$. Then for any two distinct vertices $\gamma, \delta \in \Gamma$, the graph $\Gamma \setminus \{\gamma, \delta\}$ has smallest eigenvalue > -m.

Proof. Let v be the number of vertices of Γ , and denote by p(x) and $p_{\alpha}(x)$ $(\alpha \in \Gamma)$ the characteristic polynomials of Γ and $\Gamma \setminus \{\alpha\}$, respectively. By Clarke [14], the derivative p'(x) can be expressed as $p'(x) = \sum_{\alpha \in \Gamma} p_{\alpha}(x)$. Since $\Gamma \in \mathscr{G}_{-m}^{\#}$, all proper subgraphs of Γ have smallest eigenvalue $\geq -m$; in particular, $(-1)^{v-1}p_{\alpha}(x)$ is positive for all x < -m. Hence, $(-1)^{v-1}p(x)$ is strictly increasing for x < -m, and since $\lambda_{\min}(\Gamma) < -m$, it follows that $\lambda_{\min}(\Gamma)$ is a simple eigenvalue of Γ and all other eigenvalues are > -m.

Now suppose that $\Gamma' = \Gamma \setminus \{\gamma, \delta\}$ has smallest eigenvalue $\leq -m$ (and hence equal to -m). Let $z = (z_{\alpha} | \alpha \in \Gamma')$ be a corresponding eigenvector, and denote by $x_{c,d}$ the vector $x = (x_{\alpha} | \alpha \in \Gamma)$ with $x_{\gamma} = c$, $\gamma_{\delta} = d$, $x_{\alpha} = z_{\alpha}$ for $\alpha \in \Gamma'$. Writing A for the adjacency matrix of Γ , we have $x_{0,0}^T(A + mI)x_{0,0} = 0$, and therefore

$$x_{c,0}^T(A+mI)x_{c,0} = c^2m + 2c\sum_{\substack{\alpha\in\Gamma(\gamma)\\\alpha\neq\delta}}x_{\alpha}.$$

Since $\Gamma \setminus \{\gamma\}$ has smallest eigenvalue $\geq -m$, this expression must be nonnegative for all $c \in \mathbb{R}$, and this is possible only if $\sum_{\alpha \in \Gamma(\gamma), \alpha \neq \delta} x_{\alpha} = 0$. By the same reasoning we find that $\sum_{\alpha \in \Gamma(\delta), \alpha \neq \gamma} x_{\alpha} = 0$. Now, by construction of z, we find the relation $(A + mI)x_{0,0} = 0$, which is impossible, since -m is not an eigenvalue of Γ . Therefore, the smallest eigenvalue of $\Gamma \setminus \{\gamma, \delta\}$ is > -m. \Box

In the special case -m = -2, this result can be combined with the results of §1 and yields the following restrictions on graphs in $\mathscr{G}_{-2}^{\#}$.

FIGURE 7. The minimal graphs with smallest eigenvalue < -2 and seven vertices, and their smallest eigenvalue. A vertex is starred when its deletion leaves a graph with smallest eigenvalue -2. (4.*i* is graph number *i* in Table 4.)

2.2. **Theorem.** Let Γ be a graph with v vertices, and suppose that Γ is a minimal forbidden subgraph for the class \mathscr{G}_{-2} of graphs with smallest eigenvalue ≥ -2 . Then every subgraph of Γ with smallest eigenvalue -2 has v-1 vertices, and one of the following holds:

(i) $v \leq 10$, and there exists a vertex $\gamma \in \Gamma$ such that $\Gamma \setminus \{\gamma\}$ is a minimal graph with smallest eigenvalue -2.

(ii) $v \in \{7, 8, 9\}$, $\lambda_{\min}(\Gamma \setminus \{\gamma\}) > -2$ for every vertex $\gamma \in \Gamma$, and for some $\gamma \in \Gamma$, the graph $\Gamma \setminus \{\gamma\}$ has a representation by n = v - 1 linearly independent roots generating E_n .

Proof. We showed already that subgraphs with smallest eigenvalue -2 have v - 1 vertices. To prove the remainder, we distinguish two cases.

Case 1. All proper subgraphs of Γ with v - 1 vertices are generalized line graphs. Then Γ is a minimal forbidden subgraph for \mathscr{L}_0 with smallest eigenvalue < -2, and hence one of the graphs of Figure 6. This implies that Γ satisfies (i).

Case 2. The graph Γ contains a subgraph $\Gamma \setminus \{\delta\}$ which is not a generalized line graph. Then $\mathbb{L}^+(\Gamma \setminus \{\delta\}) \cong E_{v-1}$; in particular, $\Gamma \setminus \{\gamma, \delta\}$, having smallest eigenvalue > -2, is represented by v - 2 linearly independent roots of $E_n \subseteq E_8$, so that $v \leq 10$. If Γ contains a vertex $\gamma \in \Gamma$ such that $\lambda_{\min}(\Gamma \setminus \{\gamma\}) = -2$, then $\Gamma \setminus \{\gamma\}$ is a minimal graph with this property and (i) holds. Otherwise, $\Gamma \setminus \{\delta\}$ is represented by v - 1 linearly independent roots generating E_{v-1} , and Γ satisfies (ii). \Box

In particular, a comparison with Figure 5 yields:

2.3. Corollary. Let Γ be a graph in $\mathscr{G}_{-2}^{\#}$ with v vertices. If $v \geq 5$, then Γ contains no quadrangle; if $v \geq 6$, then Γ contains no subgraph of the form M_i $(i \leq 3)$; and if $v \geq 7$, then Γ contains no subgraph of the form M_i $(i \leq 7)$.

Theorem 2.2 and the corollary now allow a reasonably fast determination of a complete list of forbidden subgraphs for \mathscr{G}_{-2} by computer. We have already seen that a graph $\Gamma \in \mathscr{G}_{-2}^{\#}$ with at most six vertices is a minimal forbidden subgraph and hence one of the 11 graphs in Figure 6. For graphs with more than six vertices, the fact that Γ contains no quadrangle drastically restricts the possibilities for extending subgraphs of Γ so that a systematic extension process together with checks on the smallest eigenvalues of Γ and the $\Gamma \setminus \{\gamma\}$ yields a complete list in a reasonable time. (Several earlier trials to get a complete list turned out to be much too time consuming. The breakthrough was when Aart Blokhuis noticed that no minimal forbidden subgraph with six or seven vertices contained a quadrangle. After further experiments, this finally led to the corollary and then to the above theorem.)

The result of the computer search was that a complete list of minimal forbidden subgraphs for the class \mathscr{G}_{-2} of graphs with smallest eigenvalue ≥ -2 consists of 1812 graphs; cf. the following statistics (# = number of graphs in $\mathscr{G}_{-2}^{\#}$ with v vertices).

v	5	6	7	8	9	10	total
#	3	8	14	67	315	1405	1812

The adjacency matrices and smallest eigenvalues of the 1812 graphs in $\mathscr{G}_{-2}^{\#}$ are listed in Table 4. The graphs in $\mathscr{G}_{-2}^{\#}$ with up to seven vertices are drawn in Figures 6 and 7.

FIGURE 8. Minimal triangle-free graphs with smallest eigenvalue < -2 and their smallest eigenvalue. A vertex is starred when its deletion leaves a graph with smallest eigenvalue -2. (4.*i* is graph number *i* in Table 4.)

An inspection of Table 4 shows that there are only 14 graphs in $\mathscr{G}_{-2}^{\#}$ without triangles; they are drawn in Figure 8. The completeness of the list of triangle-free graphs in $\mathscr{G}_{-2}^{\#}$ can be established easily by hand on the basis of Theorem 2.2 and its corollary.

2.4. **Theorem** (Doob [20]). Let Γ be a graph with $\lambda_{\min}(\Gamma) < -2$. Then Γ contains a minimal graph with smallest eigenvalue -2 and at most nine vertices.

FIGURE 9. The graphs with largest eigenvalue < 2.

Proof. The graph Γ contains a subgraph isomorphic to a graph in \mathscr{G}_{-2}^{*} . Inspection of the list of Table 4 shows that each such graph contains a proper subgraph with smallest eigenvalue -2. \Box

Note that Doob [20] proved the theorem in a slightly different way, relying on computer calculations of Brendan McKay. It would be very interesting to have a computer-free proof of this result. By Theorems 2.2 and 2.4, the graphs in $\mathscr{G}_{-2}^{\#}$ can be characterized as the graphs obtained by adding to a minimal graph with smallest eigenvalue -2 and ≤ 9 vertices a new vertex ∞ and edges containing ∞ in such a way that the eigenvector coefficients (with respect to the eigenvalue -2) of the neighbors of ∞ do *not* sum up to zero. This follows from a similar argument as in the second part of the proof of Proposition 2.1.

Let us digress for a moment and consider some related work on the *largest* eigenvalue of a graph. Denote by \mathscr{G}_m $(m \ge 1)$ the class of graphs Γ with largest eigenvalue $\lambda_{\max}(\Gamma) \le m$. The graphs in \mathscr{G}_2 , listed in Figures 9 and 10, have been determined by Smith [38] (cf. also Lemmens and Seidel [31]); they are precisely the spherical and affine Dynkin diagrams for so-called simply-laced root systems (cf. Hiller [24]).

A complete list of minimal forbidden subgraphs for \mathscr{G}_2 is easily established and can be deduced from the list of minimal hyberbolic Dynkin diagrams given in Chein [13] and Koszul [29]. The list $\mathscr{G}_2^{\#}$ consists of 18 graphs, namely the 13 bipartite graphs of Figure 8 (4.410 is not bipartite; $\lambda_{\min}(\Gamma) = -\lambda_{\max}(\Gamma)$ if Γ is bipartite) and five further graphs drawn in Figure 11 which are not bipartite. The maximal number of vertices of graphs in $\mathscr{G}_2^{\#}$ is ten. One can read off from Figures 8–11 that every graph not containing a graph with largest eigenvalue 2 is contained in such a graph (cf. Doob [20]).

For $\hat{m} = \sqrt{2 + \sqrt{5}} \doteq 2.058171$ (= $\tau^{3/2} = \tau^{1/2} + \tau^{-1/2}$, where $\tau = (1 + \sqrt{5})/2$), $\mathscr{G}_{\hat{m}}$ has been determined by Cvetković, Doob, and Gutman [16] and Brouwer and Neumaier [7]. $\mathscr{G}_{\hat{m}}$ consists of the paths, polygons, the trees Y_{ij1} , Y_{i22} , Y_{332} (where Y_{ijk} is the Y-shaped tree with a unique vertex of valency 3, the deletion of which leaves three disjoint paths with i, j, and k vertices), and the trees Π_{ijk} (π -shaped, consisting of a path with i+j+k-1 vertices and two further vertices of valency 1 adjacent to the i th and (i+j)th vertex of the path), where $\tau^j \ge (\tau^i - 2)(\tau^k - 2)$ (i.e., $j \ge i+k-\varepsilon_{ik}$, where $\varepsilon_{23} = \varepsilon_{32} = 4$,

FIGURE 10. The graphs with largest eigenvalue 2, with a corresponding eigenvector.

3.000000

FIGURE 11. The minimal graphs with largest eigenvalue > 2 which are not bipartite, and their largest eigenvalue. A vertex is starred when its deletion leaves a graph with largest eigenvalue -2.

 $\varepsilon_{2i} = \varepsilon_{i2} = 3$ for i > 3, $\varepsilon_{33} = \varepsilon_{34} = \varepsilon_{43} = 2$, $\varepsilon_{3i} = \varepsilon_{i3} = \varepsilon_{44} = \varepsilon_{45} = \varepsilon_{54} = 1$, and $\varepsilon_{ik} = 0$ otherwise). It is remarkable that $\hat{m} = \sup\{\lambda_{\max}(\Gamma) \mid \Gamma \in \mathscr{G}_{\hat{m}}\}$ although no graph with $\lambda_{\max}(\Gamma) = \hat{m}$ exists; in particular, this shows that the set of maximal eigenvalues of graphs is not closed. As observed by Hoffman [27], $\mathscr{G}_{\hat{m}}^{\#}$ is infinite, since it contains all subgraphs obtained by adding a vertex of valency 1 to the vertices of a polygon (and \hat{m} is maximal with this property). It would be interesting to know the set of numbers m, -m such that $\mathscr{G}_{m}^{\#}$ or $\mathscr{G}_{-m}^{\#}$ are finite; however, these seem to be very difficult problems.

FIGURE 12. The extremal graph Y_{621} .

The fact that $\mathscr{G}_{+2}^{\#}$ and $\mathscr{G}_{-2}^{\#}$ are finite implies the existence of "eigenvalue gaps" at ± 2 in the following sense (cf. [23] for λ_{\max}).

2.5. **Theorem.** Let $\rho \doteq 2.006594$ be the largest solution of the equation $(\rho^3 - \rho)^2(\rho^2 - 3)(\rho^2 - 4) = 1$. Then there is no graph Γ such that $-\rho < \lambda_{\min}(\Gamma) < -2$ or $2 < \lambda_{\max}(\Gamma) < \rho$. Moreover, every graph with $\lambda_{\min}(\Gamma) = -\rho$ or $\lambda_{\max}(\Gamma) = \rho$ is isomorphic to the graph Y_{621} .

Proof. Inspection of Table 5 shows that the only graph in $\mathscr{G}_{-2}^{\#}$ with $\lambda_{\min}(\Gamma) \geq -\rho$ is Y_{621} , which has $\lambda_{\min}(\Gamma) = -\rho$. Now every graph with $\lambda_{\min}(\Gamma) < -2$ not in $\mathscr{G}_{-2}^{\#}$ contains a proper subgraph $\Gamma' \in \mathscr{G}_{2}^{\#}$; hence, $\lambda_{\min}(\Gamma) \leq \lambda_{\min}(\Gamma') \leq -\rho$. If equality holds, then $\Gamma' = Y_{621}$, and all subgraphs of Γ strictly containing Γ' have $-\rho$ as a multiple eigenvalue. In particular, the subgraph obtained by adjoining to Γ' one further vertex of Γ and deleting one of the vertices of Γ' again has $-\rho$ as smallest eigenvalue, and hence must be isomorphic to Y_{621} . But no graph with 11 vertices has this property. Hence, $\lambda_{\min}(\Gamma) = -\rho$ implies $\Gamma \cong Y_{621}$. The statement about λ_{\max} follows immediately, since Y_{621} is bipartite and the nonbipartite minimal graphs with largest eigenvalue > 2 (Figure 11) have largest eigenvalue > ρ . □

For graphs with large minimum valency, the eigenvalue gap at -2 is considerably larger. The following highly nontrivial result was proved by Hoffman [26] using Ramsey's theorem.

2.6. **Theorem.** Let $\hat{\lambda}_k = \sup\{\lambda_{\min}(\Gamma) \mid k_{\min}(\Gamma) \ge k, \lambda_{\min}(\Gamma) < -2\}$. Then $\hat{\lambda}_k$ is a monotonic decreasing sequence with limit $-1 - \sqrt{2} \doteq 2.414214$.

Theorem 2.5 implies the value $\hat{\lambda}_1 = -\rho \doteq -2.006594$. Lower bounds for the values of $\hat{\lambda}_i$ can be obtained from particular graphs with minimal valency k. In particular, we get

$$\hat{\lambda}_2 \ge \tilde{\lambda}_2 = \frac{1 - 2\sqrt{13}}{3} \doteq -2.070368$$
,

since the clique extension of an *n*-cycle, where a single vertex is replaced by a 2-clique, provides a sequence of graphs Γ_i with minimal valency 2 and $\lambda_{\min}(\Gamma_i) \to \tilde{\lambda}_2$ for $i \to \infty$. The graph of Figure 13 gives the lower bound

$$\hat{\lambda}_k \ge \tilde{\lambda}_k \doteq -(1+\sqrt{2})(1-k^{-1}+O(k^{-2})) \text{ for } k \ge 3,$$

where $\hat{\lambda}_k$ is the smallest solution of the equation

$$(x+1)^{2}(x+2)(x+3) + k(2x^{3}+9x^{2}+10x+1) + k^{2}(x^{2}+2x-1) = 0.$$

The reader is challenged to provide more extreme examples or to prove that the examples given are extremal. An explicit upper bound for $\hat{\lambda}_k$ which tends to $-1-\sqrt{2}$ for $k \to \infty$ would also be of considerable interest. In particular, for

FIGURE 13. A graph with minimal valency k.

FIGURE 14. A regular graph with valency k.

applications to distance-regular graphs (see $\S3$), we would like to know whether

$$\hat{\lambda}_k < -2.4$$
 if $k \ge 64$;

note that $\tilde{\lambda}_k < -2.4$ if k > 29.4.

If we require that Γ is regular of large valency, then $-1 - \sqrt{2}$ seems no longer to be the right limit. Among the regular graphs of valency k, the largest value of $\lambda_{\min}(\Gamma)$ observed in a limited number of test cases occurred for the graph in Figure 14, where $\lambda_{\min}(\Gamma) = -1 - \alpha_k$ with the largest zero α_k of the equation $x^3 + 2x^2 + x - 3 - k(x^2 + 2x - 2) = 0$, and $\lim_{k \to \infty} (-1 - \alpha_k) = -1 - \sqrt{3}$.

The result corresponding to Theorem 2.5 for the largest eigenvalue is trivial for minimal valency k > 2, since (by Perron-Frobenius theory) the largest eigenvalue of a graph Γ with minimal valency k is at least k, with equality if and only if the graph is regular of valency k. The more relevant value

$$\inf \{\lambda_{\max}(\Gamma) \mid k_{\min}(\Gamma) \ge k , \ \lambda_{\max}(\Gamma) > k \} \\= \inf \{\lambda_{\max}(\Gamma) \mid \Gamma \text{ not regular, } k_{\min}(\Gamma) \ge k \}$$

is not known, not even for k = 2.

3. Applications to distance-regular graphs

In this section we apply the preceding results to a characterization problem in the theory of distance-regular graphs. A connected graph Γ is called *distanceregular* if for any two vertices γ and δ at distance $i = d(\gamma, \delta)$, there are precisely c_i neighbors of δ at distance i - 1 from γ , and b_i neighbors of δ at distance i + 1 from γ (see Biggs [4], Bannai and Ito [2]). The sequence

(1)
$$\iota(\Gamma) = \{b_0, b_1, \dots, b_{d-1}; c_1, c_2, \dots, c_d\},\$$

where d is the diameter of Γ_2 , is called the *intersection array* of Γ . A fundamental problem in the theory of distance-regular graphs is the characterization of known graphs by their intersection array. Recently, Paul Terwilliger and the second author achieved a breakthrough in this direction by utilizing the classification of graphs with smallest eigenvalue -2 to settle this problem for a large class of intersection arrays containing those for the Hamming graphs, the Johnson graphs, and the half-cubes (Terwilliger [41], Neumaier [34]). Here we show that knowledge of the eigenvalue gap in Theorem 2.4 allows the characterization of distance-regular graphs for another class of intersection arrays, at least for large diameter. We begin by summarizing the background needed. The adjacency matrix A of a distance-regular graph Γ of diameter d has precisely d + 1 distinct eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$; the largest eigenvalue θ_0 is the valency $k = b_0$ of Γ and has multiplicity 1. To each eigenvalue θ of Γ there corresponds a unique idempotent matrix E in the algebra of polynomials in A satisfying the equation $AE = \theta E$, and the rank f of Eagrees with the multiplicity of θ . The (γ, δ) -entries $E_{\gamma\delta}$ of E depend only on the distance of γ and δ ,

(2)
$$E_{\gamma\delta} = u_i \text{ if } d(\gamma, \delta) = i,$$

and the u_i satisfy the recurrence relations

(3)
$$u_0 = 1, \qquad u_1 = \theta/k, \\ c_i u_{i-1} + a_i u_i + b_i u_{i+1} = \theta u_i \qquad (i = 1, ..., d-1), \\ c_d u_{d-1} + a_d u_d = \theta u_d,$$

where $a_i = k - b_i - c_i$. Conversely, if (3) holds, then θ is an eigenvalue of A and (2) defines the corresponding idempotents. These facts can be found, e.g., in [2, 4, 6]. Since an idempotent symmetric matrix is positive semidefinite, E can be considered as the Gram matrix of a set of vectors in \mathbb{R}^f ; hence, there is a mapping $-: \Gamma \to \mathbb{R}^f$ such that the images $\bar{\gamma}$, $\bar{\delta}$ of two vertices γ , $\delta \in \Gamma$ have inner product

$$(\bar{\gamma}, \bar{\delta}) = u_i$$
 if $d(\gamma, \delta) = i$.

From this graph representation in \mathbb{R}^f it is possible to deduce the following result concerning the smallest eigenvalues of the local subgraphs $\Gamma(\gamma)$:

3.1. **Proposition** (Terwilliger [43]). Let Γ be a distance-regular graph with intersection array (1), and suppose that θ is an eigenvalue of Γ with multiplicity f. If $-1 < \theta < k$, then

(4)
$$\lambda_{\min}(\Gamma(\gamma)) \ge -b_1/(\theta+1)$$
 for all $\gamma \in \Gamma$.

Moreover, if f < k, then (4) holds with equality, θ is the second-largest eigenvalue of Γ , and either $\theta + 1$ is an integer dividing b_1 , or $\theta + 1$ and $b_1/(\theta + 1)$ are irrational quadratic algebraic integers.

Proof. Inequality (4) is essentially Theorem 1(2) in [43]. The second assertion is part of Theorem 5 in [43], apart from the statement about equality in (4), which derives from the proof of that theorem. \Box

The following result of Terwilliger is also relevant in the present context.

3.2. **Proposition** (Terwilliger [40]). Let Γ be a distance-regular graph with intersection array (1).

(i) If Γ contains a quadrangle, then

(5)
$$c_i - b_i \ge c_{i-1} - b_{i-1} + a_1 + 2$$
 $(i = 1, ..., d).$

(ii) If $c_2 - b_2 = c_1 - b_1 + a_1 + 1$, then every 2-claw of Γ is in at most one quadrangle.

Proof. (i) is in Terwilliger [40], and (ii) is a simple consequence of the simplified proof of (i) in Terwilliger [42]. \Box

Terwilliger classified in [42] the distance-regular graphs satisfying (5) with equality for all *i*. Here we consider a class of intersection arrays which have equality in (5) for all $i \neq d$, namely the arrays (1) defined by

(6)
$$b_i = \mu \begin{pmatrix} m-i \\ 2 \end{pmatrix} - (m-i)(m-i-2)$$
 $(i = 0, ..., d-1),$
 $c_i = \mu \begin{pmatrix} i \\ 2 \end{pmatrix} - i(i-2)$ $(i = 1, ..., d-1),$
 $c_d = \gamma \left(\mu \begin{pmatrix} d \\ 2 \end{pmatrix} - d(d-2) \right),$

where

$$(d, \gamma) \in \left\{ \left(\frac{m}{2}, 2\right), \left(\frac{m-1}{2}, 1\right) \right\}, d > 1.$$

Note that $\mu = c_2$ and $m \in \{2d, 2d + 1\}$ are positive integers, $m \ge 4$. There are three families of distance-regular graphs realizing these arrays:

(i) The folded *m*-cube with $v = \frac{1}{2}2^m$ vertices is the graph obtained by identifying antipodal vertices in the *m*-cube, and realizes (6) with $\mu = 2$. It can be described as the graph whose vertices are the partitions of an *m*-set into two sets, where two such partitions are adjacent whenever their common refinement contains two singletons.

(ii) The folded Johnson graph with $v = \frac{1}{2} {\binom{2m}{m}}$ vertices is the graph whose vertices are the partitions of a 2*m*-set into two *m*-sets, with adjacency defined as before. Its intersection array realizes (6) with $\mu = 4$.

(iii) The folded half 2m-cube with $v = \frac{1}{2}2^{2m-1}$ vertices is the graph whose vertices are the partitions of a 2m-set into two sets of even size, where two such partitions are adjacent whenever their common refinement contains two sets of size 2. Its intersection array realizes (6) with $\mu = 6$.

In view of these examples, we call a distance-regular graph with intersection array (6) a *pseudopartition graph*. We shall prove the following characterization theorem.

3.3. **Theorem.** Let Γ be a pseudopartition graph with diameter d.

(i) If $\mu = 2$, then either Γ is a folded cube, or d = 3 and Γ is the incidence graph of a (16, 6, 2)-biplane.

(ii) If $d \ge 3$, then $\mu \in \{2, 4, 6\}$.

(iii) If $d \ge 154$, then Γ is a folded cube, a folded Johnson graph, or a folded half-cube.

Proof. We proceed in several steps.

Step 1. Γ has an eigenvalue $\theta = m - 4 + (\mu - 2) {\binom{m-2}{2}}$ with multiplicity

(7)
$$f = \frac{m(m-1)(2+(\mu-2)(m-1))(4+(\mu-2)(2m-5))}{(4+(\mu-2)(m-2))(4+(\mu-2)(m-3))}$$

To show this, we note that the intersection array belongs to the family of Q-polynomial intersection arrays of type II discussed in Bannai and Ito [2], with

parameters (in the notation of [2])

$$r_1 = -\frac{m+1}{2}, \quad r_2 = -\frac{m+2}{2}, \quad r_3 = -m - \frac{2}{\mu-2},$$

 $h = 2\mu - 4, \quad s = -m - \frac{1}{2} - \frac{2}{\mu-2}, \quad s^* = -m - 1.$

Therefore, the eigenvalues of Γ are given by

$$\theta_i = k - 4i + (\mu - 2)i(2i + 1 - 2m)$$
 $(i = 0, ..., d),$

and their multiplicity is

$$f_i = \prod_{j=1}^i q_j,$$

where

$$q_j = \frac{b_{j-1}^*}{c_j^*} = \frac{(j+s)(2j+1+s)}{j(2j-1+s)} \cdot \frac{(j+r_1)(j+r_2)(j+r_3)}{(j+s-r_1)(j+s-r_2)(j+s-r_3)}.$$

In particular, since $k = b_0 = \mu\binom{m}{2} - m(m-2) = \frac{m}{2}(2 + (\mu - 2)(m-1))$, we get for i = 1 by simplification the above values θ for θ_1 and f for f_1 .

Step 2. If $d \ge 3$, then $\mu \ne 1, 3, 5$.

 $c_3 > 0$ excludes $\mu = 1$. For $\mu = 3$, (7) reduces to

$$f = \frac{m(m-1)(2m-1)}{(m+2)},$$

so that m + 2 | 30. For $d \ge 3$ $(m \ge 6)$ this leaves the cases m = 8, 13, 28, and (8) yields a nonintegral f_3 , f_4 , f_3 in the respective cases. And for $\mu = 5$, (7) becomes

$$f = \frac{m(m-1)(3m-1)(6m-11)}{(3m-2)(3m-5)}$$

which is nonintegral for all m > 3, hence for $d \ge 2$.

Step 3. If $d \ge 3$, then $\mu \in \{2, 4, 6\}$.

To get this, we apply Proposition 3.1; note that $\theta < k$ and $\theta + 1 = \frac{m-3}{m-1}b_1 > 0$. Since $m \ge 2d \ge 6$, $\theta + 1$ is no divisor of b_2 , and since θ is rational, we must have $f \ge k = \frac{m}{2}(2 + (\mu - 2)(m - 1))$. This implies

$$2(m-1)(4+(\mu-2)(2m-5)) \le (4+(\mu-2)(m-2))(4+(\mu-2)(m-3)),$$

which simplifies to $(\mu - 6)(m - 3)(2 + (\mu - 2)(m - 2)) \le 0$. Therefore, $\mu \le 6$ and thus $\mu \in \{2, 4, 6\}$ by Step 2.

Step 4. If $\mu = 2$, then the conclusion of (i) holds.

For $m \ge 7$ this follows from Egawa [22]. For m = 6, Γ has v = 32 vertices and intersection array $\{6, 5, 4; 1, 2, 6\}$; hence, Γ is bipartite of diameter 3 and must be the incidence graph of a $2 - (\frac{v}{2}, k, \mu)$ -design, i.e., of a (16, 6, 2)-biplane. For m = 4, 5, the graph Γ is easily seen to be K_4 and $K_{4,4}$, respectively, and hence a folded *m*-cube.

Step 5. For any two nonadjacent vertices α , $\beta \in \Gamma(\gamma)$, the number $\mu(\alpha, \beta)$ of common neighbors of α and β in $\Gamma(\gamma)$ is $\mu - 1$ or $\mu - 2$.

For, if $\mu(\alpha, \beta) \leq \mu - 3$, then there are two distinct vertices $\delta, \delta' \in \Gamma_2(\gamma)$ adjacent with α and β so that the 2-claw $\alpha\gamma\beta$ is in two distinct quadrangles, contradicting Proposition 3.2(ii). Since $\mu(\alpha, \beta) \leq \mu - 1$, this forces $\mu(\alpha, \beta) \in \{\mu - 1, \mu - 2\}$.

Step 6. Each neighborhood $\Gamma(\gamma)$ has smallest eigenvalue $\geq -2 - \frac{2}{m-3}$.

This follows from Proposition 3.1 since

$$\frac{b_1}{\theta+1} = \frac{m-1}{m-3} = 1 + \frac{2}{m-3}.$$

Step 7. If $d \ge 154$, then each neighborhood $\Gamma(\gamma)$ is a line graph.

In this case, $m \ge 308$ so that $\lambda_{\min}(\Gamma(\gamma)) \ge -2 - \frac{2}{305} > -2.00656 > -\rho$, and by Theorem 2.5, $\lambda_{\min}(\Gamma(\gamma)) \ge -2$. Now $\Gamma(\gamma)$ is a regular graph with $k = \frac{m}{2}(2 + (\mu - 2)(m - 1)) \ge m^2 > 28$ (since we may assume $\mu \ge 4$ by Steps 3 and 4) vertices and valency $a_1 = k - 1 - b_1 < k - 2$, and by Theorem 1.2, each $\Gamma(\gamma)$ must be a line graph.

Step 8. If $\mu = 4$, then each neighborhood $\Gamma(\gamma)$ which is a line graph is in fact an $(m \times m)$ -grid.

By Step 5, the hypothesis of Proposition 5 of Neumaier [34] is satisfied with c = 2 for $\Gamma(\gamma) = L(\Delta)$, and part (iii) of that proposition, together with the fact that $\Gamma(\gamma)$ contains $k = m^2$ vertices and is regular of valency $a_1 = k - 1 - b_1 = 2(m-1)$, only leaves the case $\Delta = K_{m,m}$. Therefore, $\Gamma(\gamma) = L(K_{m,m})$ is an $(m \times m)$ -grid.

Step 9. If $d \ge 154$ and $\mu = 4$, then Γ is a folded Johnson graph.

For Γ is locally an $(m \times m)$ -grid by Steps 7 and 8, and has the same intersection array, hence the same number $\frac{1}{2} \binom{2m}{m}$ of vertices as a folded Johnson graph. By Blokhuis and Brouwer [5], Γ is a quotient of a Johnson graph J(2m, m), and distance regularity forces that antipodal vertices (corresponding to complementary *m*-sets) must be identified, so that Γ is a folded Johnson graph.

Step 10. If $\mu = 6$, then each neighborhood $\Gamma(\gamma)$ which is a line graph is in fact a triangular graph T(2m).

By Step 5, the hypothesis of Proposition 5 of Neumaier [34] is satisfied with c = 4 for $\Gamma(\gamma) \cong L(\Delta)$, and part (i) of that proposition, together with the fact that $\Gamma(\gamma)$ contains k = m(2m - 1) vertices, implies $\Delta = K_{2m}$ and $\Gamma(\gamma) \cong T(2m)$.

Step 11. If $d \ge 154$ and $\mu = 6$, then Γ is a folded half-cube.

For Γ is locally T(2m) by Steps 7 and 10, and has the same intersection array, hence the same number $\frac{1}{2}2^{2m-1}$ of vertices as the folded half *m*-cube. Since $d \ge 3$ and $m \ge 6$, the vertices and *m*-cliques of Γ form a semibiplane, i.e., distinct vertices are in precisely zero or two blocks (*m*-cliques), and distinct blocks intersect in zero or two vertices. The incidence graph Γ^* of this semibiplane is an amply regular graph with $\lambda = 0$ and $\mu = 2$. Application of Egawa [22] shows that Γ^* is a folded 2m-cube, so that Γ is a folded half-cube. \Box

Together with the results of Terwilliger [41] (which inspired the first three steps of the preceding proof), this implies that for large diameters $(d \ge 154)$, all Q-polynomial distance-regular graphs of type II are known.

The diameter bound seems much too pessimistic, and there should be no exceptions for $d \ge 4$. In order to obtain assertion 3.3(iii) for $d \ge 4$ in place of $d \ge 154$, the argument of Step 7 has to be improved; since $m \ge 8$ for $d \ge 4$, we would need a result like

$$\Gamma$$
 regular of valency $k \ge 64 \Rightarrow \lambda_{\min}(\Gamma) < -2.4$ or $\lambda_{\min}(\Gamma) \ge -2$.

For $d \leq 3$, there are many exceptions: Husain [28] shows that there are precisely three (16, 6, 2)-biplanes, and since each of them is self-dual, their incidence graphs give three nonisomorphic distance-regular graphs with intersection array {6, 5, 4; 1, 2, 6}, one of which is the folded 5-cube. Bussemaker et al. [9] show that there are at least 1853 strongly regular graphs with the same intersection array {16, 9; 1, 4} as the folded Johnson graph with $v = \frac{1}{2} {8 \choose 4} = 35$ vertices. Any pair of orthogonal Latin squares of order 8 gives a Latin square graph LS₄(8) with the same intersection array {28, 25; 1, 6} as the folded half 8-cube. Any Latin square of order 16 gives a Latin square graph LS₃(16) with the same intersection array {45, 28; 1, 6} as the folded half 10-cube.

BIBLIOGRAPHY

- 1. H. F. Baker, A locus with 25920 linear self-transformations, Cambridge Tracts in Math. and Math. Physics, vol. 39, Cambridge Univ. Press, London, 1946.
- 2. E. Bannai and T. Ito, *Algebraic combinatorics*. I: *Association schemes*, Benjamin-Cummings Lecture Note Series, vol. 58, Benjamin/Cummings, London, 1984.
- 3. L. W. Beineke, *Derived graphs and digraphs*, Beiträge zur Graphentheorie (H. Sachs et al., eds.), Teubner, Leipzig, 1968, pp. 17-33.
- 4. N. L. Biggs, *Algebraic graph theory*, Cambridge Tracts in Math., vol. 67, Cambridge Univ. Press, Cambridge, 1974.
- 5. A. Blokhuis and A. E. Brouwer, *Classification of the locally 4-by-4 grid graphs*, Math. Centr. Report PM-R8401, Amsterdam, 1984.
- 6. A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance regular graphs*, Springer, Berlin, 1989.
- 7. A. E. Brouwer and A. Neumaier, The graphs with largest eigenvalue between 2 and $\sqrt{2+\sqrt{2}}$, Linear Algebra Appl. 114/115 (1989), 273-276.
- 8. F. C. Bussemaker, D. H. Cvetković, and J. J. Seidel, *Graphs related to exceptional root systems*, Report TH Eindhoven 76-WSK-05, 1976.
- F. C. Bussemaker, R. A. Mathon, and J. J. Seidel, *Tables of two-graphs*, Combinatorics and Graph Theory (S. B. Rao, ed.), Lecture Notes in Math., vol. 885, Springer, 1981, pp. 70-112. (Full details in Report 79-WSK-05, Technische Hogeschool Eindhoven, 1979.)
- 10. P. J. Cameron, J. M. Goethals, J. J. Seidel, and E. E. Shult, *Line graphs, root systems and elliptic geometry*, J. Algebra 43 (1976), 305-327.
- Lie-Chien Chang, The uniqueness and non-uniqueness of the triangular association scheme, Sci. Record Peking Math. (New Ser.) 3 (1959), 604-613.
- 12. L. C. Chang, Association schemes of partially balanced block designs with parameters n = 28, $n_1 = 12$, $n_2 = 15$ and $p_{11}^2 = 4$, Sci. Record Peking Math. (New Ser.) 4 (1960), 12–18.
- 13. M. Chein, Recherche des graphes des matrices de Coxeter hyperboliques d'ordre ≤ 10 , Rev. Française Informat. Recherche Opérationnelle **3** (1969), 3–16.
- 14. F. H. Clarke, A graph polynomial and its application, Discrete Math. 3 (1972), 305-315.
- 15. H. S. M. Coxeter, Extreme forms, Canad. J. Math. 3 (1951), 391-441.
- 16. D. M. Cvetković, M. Doob, and I. Gutman, On graphs whose spectral radius does not exceed $\sqrt{2+\sqrt{5}}$, Ars Combinatoria 14 (1982), 225–239.

- 17. D. M. Cvetković, M. Doob, and H. Sachs, *Spectra of graphs*, V. E. B. Deutscher Verlag der Wissenschaften, Berlin, 1979. (Also, Academic Press, New York, 1980.)
- 18. D. M. Cvetković, M. Doob, and S. Simić, *Generalized line graphs*, J. Graph Theory 5 (1981), 385-399.
- M. Doob, An interrelation between line graphs, eigenvalues, and matroids, J. Combin. Theory Ser. B 15 (1973), 40-50.
- 20. ____, A surprising property of the least eigenvalue of a graph, Linear Algebra Appl. **46** (1982), 1–7.
- M. Doob and D. Cvetković, On spectral characterizations and embeddings of graphs, Linear Algebra Appl. 27 (1979), 17-26.
- 22. Y. Egawa, Characterization of H(n, q) by the parameters, J. Combin. Theory Ser. A 31 (1981), 108-125.
- 23. F. Goodman, P. de la Harpe, and V. Jones, *Dynkin diagrams and towers of algebras*, Chapter 1: *Matrices over natural numbers*, Preprint, Genève, 1986.
- 24. H. Hiller, Geometry of Coxeter groups, Research Notes in Math., Pitman, New York, 1982.
- A. J. Hoffman, On eigenvalues and colourings of graphs, Graph Theory and its Applications (B. Harris, ed.), Academic Press, New York, 1970, pp. 79–91.
- 26. ____, On graphs whose least eigenvalue exceeds $-1 \sqrt{2}$, Linear Algebra Appl. 16 (1977), 153-166.
- 27. ____, On limit points of spectral radii of nonnegative symmetric integral matrices, Graph Theory and Applications (Y. Alavi et al., eds.), Lecture Notes in Math., vol. 303, Springer, 1972, pp. 165–172.
- 28. Q. M. Husain, On the totality of the solutions for the symmetrical incomplete block designs: $\lambda = 2$, k = 5 or 6, Sankhyā 7 (1945), 204–208.
- 29. J. L. Koszul, Lectures on hyperbolic Coxeter groups, Dept. Math., Univ. Notre Dame, 1967.
- Vijaya Kumar, S. B. Rao, and N. M. Singhi, Graphs with eigenvalues at least -2, Linear Algebra Appl. 46 (1982), 27-42.
- 31. P. W. H. Lemmens and J. J. Seidel, Equiangular lines, J. Algebra 24 (1973), 494-512.
- 32. G. A. Miller, H. F. Blichfeldt, and L. E. Dickson, *Theory and applications of finite groups*, Part III, reprint, Dover, New York, 1961.
- 33. A. Neumaier, Lattices of simplex type, SIAM J. Alg. Discrete Math. 4 (1983), 145-160.
- 34. ____, Characterization of a class of distance regular graphs, J. Reine Angew. Math. 357 (1985), 182-192.
- 35. S. B. Rao, N. M. Singhi, and K. S. Vijayan, *The minimal forbidden subgraphs for generalized line graphs*, Combinatorics and Graph Theory (S. B. Rao, ed.), Lecture Notes in Math., vol. 885, Springer, 1981, pp. 459–472.
- 36. J. J. Seidel, Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3, Linear Algebra Appl. 1 (1968), 281-298.
- 37. S. S. Shrikhande, The uniqueness of the L_2 association scheme, Ann. Math. Statist. 30 (1959), 781-798.
- 38. J. H. Smith, *Some properties of the spectrum of a graph*, Combinatorial Structures and Their Applications (R. Guy, ed.), Gordon and Breach, New York, 1970, pp. 403–406.
- 39. D. E. Taylor, Regular 2-graphs, Proc. London Math. Soc. (3) 34 (1977), 257-274.
- 40. P. Terwilliger, Distance-regular graphs with girth 3 or 4. I, J. Combin. Theory Ser. B 39 (1985), 265-281.
- 41. <u>A class of distance-regular graphs that are Q-polynomial</u>, J. Combin. Theory Ser. B 40 (1986), 213–223.
- 42. ____, Root systems and the Johnson and Hamming graphs, European J. Combin. 8 (1987), 73-102.
- 43. <u>A new feasibility condition for distance regular graphs</u>, Discrete Math. **61** (1986), 311-315.

- 44. G. R. Vijayakumar, A characterization of generalized line graphs and classification of graphs with eigenvalues at least -2, J. Combin. Inform. System Sci. (to appear).
- 45. E. Witt, Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Hansischen Univ. 14 (1941), 289-322.

Department of Computer Science, Technical University, P. O. Box 513, NL 5600 MB Eindhoven, The Netherlands

Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Str. 10, D 7800 Freiburg, Germany

E-mail address: neum@ruf1.sun.uni-freiburg.de

608